

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765904/publications.pdf Version: 2024-02-01

LUN XI

#	Article	IF	CITATIONS
1	Highâ€Quality Cs ₂ AgBiBr ₆ Double Perovskite Film for Leadâ€Free Inverted Planar Heterojunction Solar Cells with 2.2 % Efficiency. ChemPhysChem, 2018, 19, 1696-1700.	2.1	306
2	Bilateral Interface Engineering toward Efficient 2D–3D Bulk Heterojunction Tin Halide Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 713-721.	17.4	191
3	Conjugated Organic Cations Enable Efficient Self-Healing FASnI3 Solar Cells. Joule, 2019, 3, 3072-3087.	24.0	190
4	Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V. Journal of Physical Chemistry Letters, 2017, 8, 394-400.	4.6	151
5	Multichannel Interdiffusion Driven FASnI ₃ Film Formation Using Aqueous Hybrid Salt/Polymer Solutions toward Flexible Leadâ€Free Perovskite Solar Cells. Advanced Materials, 2017, 29, 1606964.	21.0	137
6	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie - International Edition, 2018, 57, 5754-5758.	13.8	117
7	Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ PbI ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1704836.	14.9	112
8	Highâ€Performance Solutionâ€Processed Doubleâ€Walled Carbon Nanotube Transparent Electrode for Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1901204.	19.5	101
9	Conjugated Molecules "Bridgeâ€ŧ Functional Ligand toward Highly Efficient and Longâ€Term Stable Perovskite Solar Cell. Advanced Functional Materials, 2019, 29, 1808119.	14.9	88
10	Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden–Popper Phases. Journal of the American Chemical Society, 2020, 142, 19705-19714.	13.7	83
11	Suppressing Ion Migration Enables Stable Perovskite Lightâ€Emitting Diodes with Allâ€Inorganic Strategy. Advanced Functional Materials, 2020, 30, 2001834.	14.9	76
12	Ag-encapsulated Au plasmonic nanorods for enhanced dye-sensitized solar cell performance. Journal of Materials Chemistry A, 2015, 3, 4659-4668.	10.3	65
13	Chemical sintering reduced grain boundary defects for stable planar perovskite solar cells. Nano Energy, 2019, 56, 741-750.	16.0	65
14	Highly Transparent, Conductive, Flexible Resin Films Embedded with Silver Nanowires. Langmuir, 2015, 31, 4950-4957.	3.5	62
15	Formation of ultrasmooth perovskite films toward highly efficient inverted planar heterojunction solar cells by micro-flowing anti-solvent deposition in air. Journal of Materials Chemistry A, 2016, 4, 6295-6303.	10.3	61
16	High-Brightness and Color-Tunable FAPbBr ₃ Perovskite Nanocrystals 2.0 Enable Ultrapure Green Luminescence for Achieving Recommendation 2020 Displays. ACS Applied Materials & Interfaces, 2020, 12, 2835-2841.	8.0	61
17	Rubidium Doping for Enhanced Performance of Highly Efficient Formamidinium-Based Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9849-9857.	8.0	58
18	Surface mediated ligands addressing bottleneck of room-temperature synthesized inorganic perovskite nanocrystals toward efficient light-emitting diodes. Nano Energy, 2020, 70, 104467.	16.0	56

Jun Xi

#	Article	IF	CITATIONS
19	Rational Core–Shell Design of Open Air Low Temperature In Situ Processable CsPbI ₃ Quasiâ€Nanocrystals for Stabilized pâ€iâ€n Solar Cells. Advanced Energy Materials, 2019, 9, 1901787.	19.5	53
20	High Stability and Ultralow Threshold Amplified Spontaneous Emission from Formamidinium Lead Halide Perovskite Films. Journal of Physical Chemistry C, 2017, 121, 15318-15325.	3.1	50
21	A dopant-free twisted organic small-molecule hole transport material for inverted planar perovskite solar cells with enhanced efficiency and operational stability. Nano Energy, 2019, 64, 103946.	16.0	49
22	Allâ€Inorganic Heteroâ€Structured Cesium Tin Halide Perovskite Lightâ€Emitting Diodes With Current Density Over 900 A cm ^{â^2} and Its Amplified Spontaneous Emission Behaviors. Physica Sta Solidi - Rapid Research Letters, 2018, 12, 1800090.	atu s. 4	47
23	The Fascinating Properties of Tin-Alloyed Halide Perovskites. ACS Energy Letters, 2021, 6, 1803-1810.	17.4	47
24	A facile one-step solution deposition via non-solvent/solvent mixture for efficient organometal halide perovskite light-emitting diodes. Nanoscale, 2016, 8, 11084-11090.	5.6	41
25	Highly-efficient and low-temperature perovskite solar cells by employing a Bi-hole transport layer consisting of vanadium oxide and copper phthalocyanine. Chemical Communications, 2018, 54, 6177-6180.	4.1	37
26	Initiating crystal growth kinetics of α-HC(NH2)2PbI3 for flexible solar cells with long-term stability. Nano Energy, 2016, 26, 438-445.	16.0	35
27	Photoinduced Cross Linkable Polymerization of Flexible Perovskite Solar Cells and Modules by Incorporating Benzyl Acrylate. Advanced Functional Materials, 2022, 32, .	14.9	32
28	Flexible Perovskite Solar Modules with Functional Layers Fully Vacuum Deposited. Solar Rrl, 2020, 4, 2000292.	5.8	29
29	Modified deposition process of electron transport layer for efficient inverted planar perovskite solar cells. Chemical Communications, 2015, 51, 8986-8989.	4.1	28
30	Abnormal spatial heterogeneity governing the charge-carrier mechanism in efficient Ruddlesden–Popper perovskite solar cells. Energy and Environmental Science, 2021, 14, 4915-4925.	30.8	24
31	Scalable, Template Driven Formation of Highly Crystalline Leadâ€īin Halide Perovskite Films. Advanced Functional Materials, 2021, 31, 2105734.	14.9	22
32	Controlled thickness and morphology for highly efficient inverted planar heterojunction perovskite solar cells. Nanoscale, 2015, 7, 10699-10707.	5.6	21
33	Electric field-modulated amplified spontaneous emission in organo-lead halide perovskite CH3NH3PbI3. Applied Physics Letters, 2015, 107, .	3.3	19
34	Impermeable inorganic "walls―sandwiching perovskite layer toward inverted and indoor photovoltaic devices. Nano Energy, 2021, 88, 106286.	16.0	19
35	Silver-loaded anatase nanotubes dispersed plasmonic composite photoanode for dye-sensitized solar cells. Organic Electronics, 2014, 15, 2847-2854.	2.6	18
36	Local nearly non-strained perovskite lattice approaching a broad environmental stability window of efficient solar cells. Nano Energy, 2020, 75, 104940.	16.0	15

Jun Xi

#	Article	IF	CITATIONS
37	Enhanced lasing assisted by the Ag-encapsulated Au plasmonic nanorods. Optics Letters, 2015, 40, 990.	3.3	12
38	Perovskite Photovoltaics: Pseudohalideâ€Induced Recrystallization Engineering for CH ₃ NH ₃ PbI ₃ Film and Its Application in Highly Efficient Inverted Planar Heterojunction Perovskite Solar Cells (Adv. Funct. Mater. 2/2018). Advanced Functional Materials, 2018, 28, 1870013.	14.9	5
39	Directionally Selective Polyhalide Molecular Glue for Stable Inverted Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000244.	5.8	4
40	Charge Transport between Coupling Colloidal Perovskite Quantum Dots Assisted by Functional Conjugated Ligands. Angewandte Chemie, 2018, 130, 5856-5860.	2.0	3
41	Harvesting the Triplet Excitons of Quasi-Two-Dimensional Perovskite toward Highly Efficient White Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2022, 13, 3674-3681.	4.6	3
42	Deciphering perovskite crystal growth in interdiffusion protocol for planar heterojunction photovoltaic devices. Organic Electronics, 2018, 53, 88-95.	2.6	2