Qiu Gen Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7659029/publications.pdf Version: 2024-02-01

ΟΠΙ CEN ΖΗΛΝΟ

#	Article	IF	CITATIONS
1	Highly conductive fluorinated poly(biphenyl piperidinium) anion exchange membranes with robust durability. Journal of Membrane Science, 2022, 645, 120200.	8.2	43
2	Ultrathin sulfonated mesoporous interlayer facilitates to prepare highly-permeable polyamide nanofiltration membranes. Journal of Membrane Science, 2022, 652, 120507.	8.2	20
3	High-performance tetracyclic aromatic anion exchange membranes containing twisted binaphthyl for fuel cells. Journal of Membrane Science, 2022, 655, 120578.	8.2	45
4	Hollow fiber ultrafiltration membranes of poly(biphenyl-trifluoroacetone). Journal of Membrane Science, 2022, 659, 120779.	8.2	7
5	Loose nanofiltration membranes based on interfacial glutaraldehyde-amine polymerization for fast and highly selective dye/salt separation. Chemical Engineering Journal, 2022, 450, 138057.	12.7	29
6	Rigid crosslinkers towards constructing highly-efficient ion transport channels in anion exchange membranes. Journal of Membrane Science, 2021, 619, 118806.	8.2	48
7	Two-dimensional PdSn/TiO2-GO towards ethanol electrooxidation catalyst with high stability. International Journal of Hydrogen Energy, 2021, 46, 19129-19139.	7.1	15
8	Ternary supportless Pd@Cd-Ag core-shell as advanced nanocatalysts towards electro-oxidation performance of ethanol. Journal of Alloys and Compounds, 2021, 868, 158955.	5.5	6
9	Two-dimensional metal-organic framework-graphene oxide hybrid nanocomposite proton exchange membranes with enhanced proton conduction. Journal of Colloid and Interface Science, 2021, 594, 593-603.	9.4	29
10	Enhanced Performance of Sulfonated Poly(ether ether Ketone) Hybrid Membranes by Introducing Sulfated MOF-808/Graphene Oxide Composites. ACS Applied Energy Materials, 2021, 4, 9664-9672.	5.1	9
11	Crosslinked naphthalene-based triblock polymer anion exchange membranes for fuel cells. Journal of Membrane Science, 2021, 636, 119569.	8.2	25
12	End-group crosslinked hexafluorobenzene contained anion exchange membranes. International Journal of Hydrogen Energy, 2021, 46, 39921-39931.	7.1	15
13	Dual hydrophobic modifications toward anion exchange membranes with both high ion conductivity and excellent dimensional stability. Journal of Membrane Science, 2020, 595, 117521.	8.2	51
14	Anion exchange membranes with dense N-spirocyclic cations as side-chain. Journal of Membrane Science, 2020, 595, 117560.	8.2	47
15	Multiple Enhancement Effects of Crown Ether in Tröger's Base Polymers on the Performance of Anion Exchange Membranes. ACS Applied Materials & Interfaces, 2020, 12, 24806-24816.	8.0	44
16	Highly conductive fluorine-based anion exchange membranes with robust alkaline durability. Journal of Materials Chemistry A, 2020, 8, 13065-13076.	10.3	59
17	Photosynergetic Electrochemical Synthesis of Graphene Oxide. Journal of the American Chemical Society, 2020, 142, 6516-6520.	13.7	41
18	Reactive microporous copolymers with excellent film-forming ability for ion exchange membranes. Journal of Power Sources, 2020, 452, 227827.	7.8	12

#	Article	IF	CITATIONS
19	Novel crosslinked aliphatic anion exchange membranes with pendant pentafluorophenyl groups. Electrochimica Acta, 2019, 321, 134634.	5.2	29
20	Anion conductive membrane performance facilitation via tethering flexible with rigid backbones using oscillational chain. Journal of Power Sources, 2019, 436, 226856.	7.8	28
21	Well-dispersed Pd–Sn nanocatalyst anchored on TiO2 nanosheets with enhanced activity and durability for ethanol electarooxidation. Electrochimica Acta, 2019, 320, 134588.	5.2	16
22	Orderly branched anion exchange membranes bearing long flexible multi-cation side chain for alkaline fuel cells. Journal of Membrane Science, 2019, 589, 117247.	8.2	53
23	Self-recoverable Pd–Ru/TiO ₂ nanocatalysts with ultrastability towards ethanol electrooxidation. Nanoscale, 2019, 11, 3311-3317.	5.6	25
24	A hydrophobic pervaporation membrane with hierarchical microporosity for high-efficient dehydration of alcohols. Chemical Engineering Science, 2019, 206, 489-498.	3.8	16
25	Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs. Journal of Membrane Science, 2019, 585, 90-98.	8.2	53
26	Crown ether bridged anion exchange membranes with robust alkaline durability. Journal of Membrane Science, 2019, 578, 230-238.	8.2	44
27	Tetraamminezinc complex integrated interpenetrating polymer network nanocomposite membrane for phosphorous recovery. AICHE Journal, 2019, 65, 755-765.	3.6	14
28	Highly conductive anion exchange membranes with long flexible multication spacer. Journal of Membrane Science, 2018, 553, 209-217.	8.2	73
29	Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation. Journal of Industrial and Engineering Chemistry, 2018, 63, 296-302.	5.8	49
30	Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells. Journal of Membrane Science, 2018, 552, 367-376.	8.2	78
31	Borate crosslinking of polydopamine grafted carbon nanotubes membranes for protein separation. Chemical Engineering Journal, 2018, 337, 110-121.	12.7	30
32	Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells. Journal of Membrane Science, 2018, 550, 254-265.	8.2	55
33	Towards improved antifouling ability and separation performance of polyethersulfone ultrafiltration membranes through poly(ethylenimine) grafting. Journal of Membrane Science, 2018, 554, 125-133.	8.2	40
34	Novel H-PdSnNi Catalyst with Enhanced Ethanol Electrooxidation Performance in Alkaline Medium. Electrochimica Acta, 2018, 259, 1145-1153.	5.2	13
35	Fullerene-regulated graphene oxide nanosheet membranes with well-defined laminar nanochannels for precise molecule sieving. Journal of Materials Chemistry A, 2018, 6, 22590-22598.	10.3	33
36	Facile construction of crosslinked all-carbon-backbone anion-exchange membranes with robust durability. Journal of Materials Chemistry A, 2018, 6, 24831-24840.	10.3	28

#	Article	IF	CITATIONS
37	Alkali-stable partially fluorinated poly(arylene ether) anion exchange membranes with a claw-type head for fuel cells. Journal of Materials Chemistry A, 2018, 6, 12455-12465.	10.3	74
38	Cross-Linked Poly(vinylbenzyl chloride) Anion Exchange Membranes with Long Flexible Multihead for Fuel Cells. ACS Applied Energy Materials, 2018, 1, 3479-3487.	5.1	54
39	Anion exchange membranes with well-developed conductive channels: Effect of the functional groups. Journal of Membrane Science, 2018, 564, 298-307.	8.2	84
40	Anion Conductive Triblock Copolymer Membranes with Flexible Multication Side Chain. ACS Applied Materials & Complied Materials & Complexes, 2018, 10, 18327-18337.	8.0	80
41	Multi-cation crosslinked anion exchange membranes from microporous Tröger's base copolymers. Journal of Materials Chemistry A, 2018, 6, 13302-13311.	10.3	81
42	Polyacrylonitrile mesoporous composite membranes with high separation efficiency prepared by fast freeze-extraction process. Journal of Industrial and Engineering Chemistry, 2017, 49, 61-68.	5.8	2
43	Highly efficient polymer–MOF nanocomposite membrane for pervaporation separation of water/methanol/MTBE ternary mixture. Chemical Engineering Research and Design, 2017, 117, 688-697.	5.6	26
44	Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability. Journal of Membrane Science, 2017, 539, 24-33.	8.2	85
45	Imidazolium-functionalized anion exchange membranes using poly(ether sulfone)s as macrocrosslinkers for fuel cells. RSC Advances, 2017, 7, 27342-27353.	3.6	24
46	Metal in situ surface functionalization of polymer-grafted-carbon nanotube composite membranes for fast efficient nanofiltration. Journal of Materials Chemistry A, 2017, 5, 583-592.	10.3	51
47	Triblock copolymer anion exchange membranes bearing alkyl-tethered cycloaliphatic quaternary ammonium-head-groups for fuel cells. Journal of Power Sources, 2017, 365, 282-292.	7.8	64
48	Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability. Journal of Membrane Science, 2017, 541, 358-366.	8.2	98
49	LBL assembled polyelectrolyte nanofiltration membranes with tunable surface charges and high permeation by employing a nanosheet sacrificial layer. Journal of Materials Chemistry A, 2017, 5, 14819-14827.	10.3	41
50	Clustered multi-imidazolium side chains functionalized alkaline anion exchange membranes for fuel cells. Journal of Membrane Science, 2017, 541, 214-223.	8.2	63
51	Toward improved hydrophilicity of polymers of intrinsic microporosity for pervaporation dehydration of ethylene glycol. Separation and Purification Technology, 2017, 174, 166-173.	7.9	32
52	Cellulose nanofiber intermediary to fabricate highly-permeable ultrathin nanofiltration membranes for fast water purification. Journal of Membrane Science, 2017, 524, 174-185.	8.2	113
53	Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene) Tj ETQ	2q1_1_0.78 8.2	4314 rgBT /0
54	Imidazolium-Functionalized Poly(arylene ether sulfone) Anion-Exchange Membranes Densely Grafted with Flexible Side Chains for Fuel Cells. ACS Applied Materials & Interfaces, 2016, 8, 25279-25288.	8.0	140

#	Article	IF	CITATIONS
55	Nickel hydroxide nanosheet membranes with fast water and organics transport for molecular separation. Nanoscale, 2016, 8, 18428-18435.	5.6	26
56	Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells. Journal of Materials Chemistry A, 2016, 4, 13938-13948.	10.3	177
57	Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells. Journal of Power Sources, 2016, 327, 56-66.	7.8	50
58	Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells. Journal of Membrane Science, 2016, 518, 295-304.	8.2	72
59	A Versatile Approach Towards the Fast Fabrication of Highly-Permeable Polymer Mesoporous Membranes. ChemistrySelect, 2016, 1, 3049-3053.	1.5	1
60	Facile preparation and separation performances of cellulose nanofibrous membranes. Journal of Applied Polymer Science, 2016, 133, .	2.6	22
61	Subâ€10 nm Wide Cellulose Nanofibers for Ultrathin Nanoporous Membranes with High Organic Permeation. Advanced Functional Materials, 2016, 26, 792-800.	14.9	85
62	Pervaporation removal of volatile organic compounds from aqueous solutions using the highly permeable <scp>PIM</scp> â€1 membrane. AICHE Journal, 2016, 62, 842-851.	3.6	81
63	Comb-shaped phenolphthalein-based poly(ether sulfone)s as anion exchange membranes for alkaline fuel cells. RSC Advances, 2016, 6, 17269-17279.	3.6	24
64	Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane. Journal of Chemical & Engineering Data, 2016, 61, 579-586.	1.9	37
65	Anion exchange membranes based on carbazole-containing polyolefin for direct methanol fuel cells. Journal of Membrane Science, 2016, 497, 99-107.	8.2	41
66	Ultrathin pH‧ensitive Nanoporous Membranes for Superfast Size‧elective Separation. Chemistry - an Asian Journal, 2015, 10, 1133-1137.	3.3	6
67	Orderly sandwich-shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. Journal of Membrane Science, 2015, 492, 58-66.	8.2	102
68	Highly ionic-conductive crosslinked cardo poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 491, 138-148.	8.2	58
69	Benzylmethyl-containing poly(arylene ether nitrile) as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2015, 481, 9-18.	8.2	60
70	Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes. Journal of Materials Chemistry A, 2015, 3, 18105-18114.	10.3	116
71	Phenolphthalein-based Poly(arylene ether sulfone nitrile)s Multiblock Copolymers As Anion Exchange Membranes for Alkaline Fuel Cells. ACS Applied Materials & Interfaces, 2015, 7, 8284-8292.	8.0	107
72	Fabrication of hollow platinum–ruthenium core–shell catalysts with nanochannels and enhanced performance for methanol oxidation. Journal of Power Sources, 2015, 299, 443-450.	7.8	27

#	Article	IF	CITATIONS
73	Influence of phenolphthalein groups on the structure and properties of poly(arylene ether sulfone) Tj ETQq1 1 0.7	'84314 rgl 3.6	3T ₄ /Overloci
74	Ultrafine polystyrene nanofibers and its application in nanofibrous membranes. Chemical Engineering Journal, 2015, 264, 329-335.	12.7	13
75	Fluorene-containing poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells. Journal of Membrane Science, 2014, 457, 29-38.	8.2	54
76	[Cu2(bdc)2(bpy)]n/SPES-C mixed matrix membranes for separation of methanol/methyl tert-butyl ether mixtures. Journal of Membrane Science, 2014, 454, 36-43.	8.2	37
77	Colloidosomes from poly(N-vinyl-2-pyrrolidone)-coated poly(N-isopropylacrylamide-co-acrylic acid) microgels via UV crosslinking. RSC Advances, 2014, 4, 9445.	3.6	13
78	Fluorene-containing poly (arylene ether sulfone) block copolymers: Synthesis, characterization and application. Journal of Membrane Science, 2014, 464, 72-79.	8.2	30
79	Effect of Fluorene Groups on the Properties of Multiblock Poly(arylene ether sulfone)s-Based Anion-Exchange Membranes. ACS Applied Materials & Interfaces, 2014, 6, 6776-6785.	8.0	69
80	Hollow nanoporous Au/Pt core–shell catalysts with nanochannels and enhanced activities towards electro-oxidation of methanol and ethanol. International Journal of Hydrogen Energy, 2014, 39, 8246-8256.	7.1	42
81	Highly permeable cellulose acetate nanofibrous composite membranes by freeze-extraction. Journal of Membrane Science, 2014, 454, 339-345.	8.2	31
82	UV-crosslinked chitosan/polyvinylpyrrolidone blended membranes for pervaporation. RSC Advances, 2013, 3, 1855-1861.	3.6	46
83	Polyarylethersulfone with cardo/poly (vinyl pyrrolidone) blend membrane for pervaporation of methanol/methyl tert-butyl ether mixtures. Journal of Membrane Science, 2013, 448, 55-61.	8.2	22
84	Pervaporation of water–ethanol and methanol–MTBE mixtures using poly (vinyl alcohol)/cellulose acetate blended membranes. Journal of Membrane Science, 2013, 448, 93-101.	8.2	76
85	Preparation of Cell-Embedded Colloidosomes in an Oil-in-Water Emulsion. ACS Applied Materials & Interfaces, 2013, 5, 10682-10689.	8.0	17
86	Facile Method to Prepare Monodispersed Hollow PtAu Sphere with TiO ₂ Colloidal Sphere as a Template. Industrial & Engineering Chemistry Research, 2013, 52, 7432-7438.	3.7	13
87	Facile preparation of homogeneous polyelectrolyte complex membranes for separation of methanol/methyl tert-butyl ether mixtures. Journal of Membrane Science, 2013, 447, 246-252.	8.2	24
88	Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation. Nanoscale, 2013, 5, 11028.	5.6	38
89	Pervaporation separation of methanol/methyl tert-butyl ether mixtures using polyarylethersulfone with cardo membranes. Separation and Purification Technology, 2013, 107, 211-218.	7.9	34
90	Anion exchange membranes based on poly(vinyl alcohol) and quaternized polyethyleneimine for direct methanol fuel cells. Journal of Applied Polymer Science, 2013, 128, 3853-3860.	2.6	23

#	Article	IF	CITATIONS
91	Chitosan/polyvinylpyrrolidoneâ€silica hybrid membranes for pervaporation separation of methanol/ethylene glycol azeotrope. Journal of Applied Polymer Science, 2013, 129, 3178-3184.	2.6	13
92	Pervaporation of Methanol–Ethylene Glycol Mixture over Organic–Inorganic Hybrid Membranes. Industrial & Engineering Chemistry Research, 2013, 52, 7541-7549.	3.7	16
93	Separation of methanol/methyl tert-butyl ether using sulfonated polyarylethersulfone with cardo (SPES-C) membranes. Journal of Membrane Science, 2013, 430, 180-187.	8.2	22
94	Oneâ€pot synthesis of composite microspheres with coreâ€shell structure. Journal of Polymer Science Part A, 2013, 51, 2702-2708.	2.3	1
95	CuOâ€filled aminomethylated polysulfone hybrid membranes for deep desulfurization. Journal of Applied Polymer Science, 2013, 130, 3718-3725.	2.6	20
96	Crystal structure of 4-(4-methylphenyl)-2,2'-bipyridine-6-carboxylic acid- N,N-dimethylformamide (1:0.5), C18H14N2O2·0.5C3H7NO, C39H35N5O5. Zeitschrift Fur Kristallographie - New Crystal Structures, 2013, 228, 51-52.	0.3	1
97	Microstructure-related performances of poly(vinyl alcohol)-silica hybrid membranes: a molecular dynamics simulation study. Journal of Materials Chemistry, 2012, 22, 10860.	6.7	22
98	Self-crosslinked anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s for direct methanol fuel cells. International Journal of Hydrogen Energy, 2012, 37, 11383-11393.	7.1	41
99	One-pot synthesis of poly(N-isopropylacrylamide)/chitosan composite microspheres via microemulsion. Carbohydrate Polymers, 2012, 90, 690-695.	10.2	13
100	Pervaporation dehydration of water/ethanol/ethyl acetate mixtures using poly(vinyl alcohol)–silica hybrid membranes. Journal of Applied Polymer Science, 2012, 126, 778-787.	2.6	24
101	Ultrathin freestanding nanoporous membranes prepared from polystyrene nanoparticles. Journal of Materials Chemistry, 2011, 21, 1684-1688.	6.7	62
102	A novel poly(dimethyl siloxane)/poly(oligosilsesquioxanes) composite membrane for pervaporation desulfurization. Journal of Membrane Science, 2011, 366, 335-341.	8.2	56
103	Amino-functionalized poly(vinyl alcohol) membranes for enhanced water permselectivity. Journal of Membrane Science, 2010, 360, 276-283.	8.2	20
104	Structure and pervaporation performance of novel quaternized poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 1121-1126.	227 Td (al 2.6	cohol)/γâ€ar 5
105	Molecular simulation of CO2/CH4 permeabilities in polyamide–imide isomers. Journal of Membrane Science, 2010, 348, 204-212.	8.2	60
106	A Fully Flexible Potential Model for Carbon Dioxide. Chinese Journal of Chemical Engineering, 2009, 17, 268-272.	3.5	66
107	Pervaporation dehydration of ethyl acetate/ethanol/water azeotrope using chitosan/poly (vinyl) Tj ETQq1 1 0.78	4314 rgBT 8.2	/Overlock 10
108	Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol. Journal of Membrane Science, 2009, 335, 68-75.	8.2	82

#	Article	IF	CITATIONS
109	Structure-related diffusion in poly(methyl methacrylate)/polyhedral oligomeric silsesquioxanes composites: A molecular dynamics simulation study. Journal of Membrane Science, 2009, 342, 105-112.	8.2	28
110	Microstructure dependent diffusion of water–ethanol in swollen poly(vinyl alcohol): A molecular dynamics simulation study. Chemical Engineering Science, 2009, 64, 334-340.	3.8	70
111	Synthesis and characterization of cross-linked quaternized poly(vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells. Journal of Power Sources, 2008, 183, 447-453.	7.8	160
112	Dehydration of acetic acid by pervaporation using SPEK-C/PVA blend membranes. Journal of Membrane Science, 2008, 320, 416-422.	8.2	45
113	Composite membranes prepared from glutaraldehyde cross-linked sulfonated cardo polyetherketone and its blends for the dehydration of acetic acid by pervaporation. Journal of Membrane Science, 2008, 325, 184-191.	8.2	27
114	Effects of annealing on the physico-chemical structure and permeation performance of novel hybrid membranes of poly(vinyl alcohol)/l͡³-aminopropyl-triethoxysilane. Microporous and Mesoporous Materials, 2008, 110, 379-391.	4.4	26
115	Dehydration of acetic acid using sulfonation cardo polyetherketone (SPEK-C) membranes. Journal of Membrane Science, 2008, 308, 171-179.	8.2	34
116	Pervaporation separation of MeOH/DMC mixtures using STA/CS hybrid membranes. Journal of Membrane Science, 2008, 315, 74-81.	8.2	47
117	Characterization and Permeation Performance of Novel Organicâ~'Inorganic Hybrid Membranes of Poly(vinyl Alcohol)/1,2-Bis(triethoxysilyl)ethane. Journal of Physical Chemistry B, 2008, 112, 16559-16565.	2.6	40
118	Fe ₃ O ₄ /poly(<i>N</i> -Isopropylacrylamide)/Chitosan Composite Microspheres with Multiresponsive Properties. Industrial & Engineering Chemistry Research, 2008, 47, 7700-7706.	3.7	78
119	Structure and permeation of organic–inorganic hybrid membranes composed of poly(vinyl alcohol) and polysilisesquioxane. Journal of Materials Chemistry, 2008, 18, 4646.	6.7	38
120	Analyzing solubility and diffusion of solvents in novel hybrid materials of poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 2007, 17, 4889.	10 Tf 50 3 6.7	07 Td (alcoho 14
121	Dehydration of Isopropanol by Novel Poly(vinyl alcohol)â^'Silicone Hybrid Membranes. Industrial & Engineering Chemistry Research, 2007, 46, 913-920.	3.7	81
122	Pervaporation characteristics and structure of poly(vinyl alcohol)/poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10	Tf 50 222	Td3(glycol)/te
123	Composite hybrid membrane of chitosan–silica in pervaporation separation of MeOH/DMC mixtures. Journal of Colloid and Interface Science, 2007, 316, 580-588.	9.4	64
124	Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes. Journal of Membrane Science, 2007, 287, 237-245.	8.2	120
125	The Policy Systems of Low-Carbon Economy for Jiangxi Province. Applied Mechanics and Materials, 0, 361-363, 892-897.	0.2	0
126	Nanosheetâ€ŧemplated graphene oxide membranes for fast molecule separation. AICHE Journal, 0, , .	3.6	2