Jie Shang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7658038/publications.pdf Version: 2024-02-01

LE SUANC

#	Article	IF	CITATIONS
1	Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy, 2022, 92, 106754.	16.0	27
2	Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. Sensors, 2022, 22, 2516.	3.8	11
3	An Antifatigue Liquid Metal Composite Electrode Ionic Polymer-Metal Composite Artificial Muscle with Excellent Electromechanical Properties. ACS Applied Materials & Interfaces, 2022, 14, 14630-14639.	8.0	17
4	A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing. Nanoscale Advances, 2022, 4, 2412-2419.	4.6	13
5	Bioâ€Inspired Multiâ€Mode Painâ€Perceptual System (MMPPS) with Noxious Stimuli Warning, Damage Localization, and Enhanced Damage Protection. Advanced Science, 2021, 8, 2004208.	11.2	17
6	Liquid Metalâ€Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications. Advanced Intelligent Systems, 2021, 3, 2000235.	6.1	33
7	Liquid Metalâ€Based Strain Sensor with Ultralow Detection Limit for Human–Machine Interface Applications. Advanced Intelligent Systems, 2021, 3, 2170073.	6.1	7
8	A Stretchable Capacitive Strain Sensor Having Adjustable Elastic Modulus Capability for Wideâ€Range Force Detection. Advanced Engineering Materials, 2020, 22, 1901239.	3.5	12
9	Anti-oxidative passivation and electrochemical activation of black phosphorus <i>via</i> covalent functionalization and its nonvolatile memory application. Journal of Materials Chemistry C, 2020, 8, 7309-7313.	5.5	11
10	A Stretchable Capacitive Strain Sensor Having Adjustable Elastic Modulus Capability for Wideâ€Range Force Detection. Advanced Engineering Materials, 2020, 22, 2070011.	3.5	6
11	A Wearable Capacitive Sensor Based on Ring/Diskâ€Shaped Electrode and Porous Dielectric for Noncontact Healthcare Monitoring. Global Challenges, 2020, 4, 1900079.	3.6	29
12	Strain-Insensitive Elastic Surface Electromyographic (sEMG) Electrode for Efficient Recognition of Exercise Intensities. Micromachines, 2020, 11, 239.	2.9	8
13	Waterproof, Highly Tough, and Fast Self-Healing Polyurethane for Durable Electronic Skin. ACS Applied Materials & Interfaces, 2020, 12, 11072-11083.	8.0	149
14	Piezocapacitive Flexible Eâ€ S kin Pressure Sensors Having Magnetically Grown Microstructures. Advanced Materials Technologies, 2020, 5, 1900934.	5.8	78
15	Asymmetric Structure Based Flexible Strain Sensor for Simultaneous Detection of Various Human Joint Motions. ACS Applied Electronic Materials, 2019, 1, 1866-1872.	4.3	35
16	Recent Advances of Quantum Conductance in Memristors. Advanced Electronic Materials, 2019, 5, 1800854.	5.1	44
17	Controlled Construction of Atomic Point Contact with 16 Quantized Conductance States in Oxide Resistive Switching Memory. ACS Applied Electronic Materials, 2019, 1, 789-798.	4.3	25
18	An Oxide Schottky Junction Artificial Optoelectronic Synapse. ACS Nano, 2019, 13, 2634-2642.	14.6	237

JIE SHANG

#	Article	IF	CITATIONS
19	Printable Liquidâ€Metal@PDMS Stretchable Heater with High Stretchability and Dynamic Stability for Wearable Thermotherapy. Advanced Materials Technologies, 2019, 4, 1800435.	5.8	92
20	Intrinsically Stretchable Resistive Switching Memory Enabled by Combining a Liquid Metal–Based Soft Electrode and a Metal–Organic Framework Insulator. Advanced Electronic Materials, 2019, 5, 1800655.	5.1	53
21	Organic and hybrid resistive switching materials and devices. Chemical Society Reviews, 2019, 48, 1531-1565.	38.1	291
22	Improving Unipolar Resistive Switching Uniformity with Cone-Shaped Conducting Filaments and Its Logic-In-Memory Application. ACS Applied Materials & Interfaces, 2018, 10, 6453-6462.	8.0	68
23	Mechano-regulated metal–organic framework nanofilm for ultrasensitive and anti-jamming strain sensing. Nature Communications, 2018, 9, 3813.	12.8	57
24	Elastic Conductors: A Composite Elastic Conductor with High Dynamic Stability Based on 3D-Calabash Bunch Conductive Network Structure for Wearable Devices (Adv. Electron. Mater. 9/2018). Advanced Electronic Materials, 2018, 4, 1870045.	5.1	0
25	A Composite Elastic Conductor with High Dynamic Stability Based on 3Dâ€Calabash Bunch Conductive Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800137.	5.1	57
26	Recyclable Liquid Metalâ€Based Circuit on Paper. Advanced Materials Technologies, 2018, 3, 1800131.	5.8	32
27	A skin-inspired tactile sensor for smart prosthetics. Science Robotics, 2018, 3, .	17.6	195
28	Nanochannels: A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition (Adv. Mater. 39/2017). Advanced Materials, 2017, 29, .	21.0	1
29	A 1D Vanadium Dioxide Nanochannel Constructed via Electricâ€Fieldâ€Induced Ion Transport and its Superior Metal–Insulator Transition. Advanced Materials, 2017, 29, 1702162.	21.0	79
30	Triphenylamine-Based Metal–Organic Frameworks as Cathode Materials in Lithium-Ion Batteries with Coexistence of Redox Active Sites, High Working Voltage, and High Rate Stability. ACS Applied Materials & Interfaces, 2016, 8, 14578-14585.	8.0	121
31	Synaptic plasticity and learning behaviours in flexible artificial synapse based on polymer/viologen system. Journal of Materials Chemistry C, 2016, 4, 3217-3223.	5.5	61
32	Reversible Luminescence Modulation upon an Electric Field on a Full Solid-State Device Based on Lanthanide Dimers. ACS Applied Materials & Interfaces, 2016, 8, 15551-15556.	8.0	8
33	Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chemical Communications, 2016, 52, 4828-4831.	4.1	71
34	An organic terpyridyl-iron polymer based memristor for synaptic plasticity and learning behavior simulation. RSC Advances, 2016, 6, 25179-25184.	3.6	48
35	Switching Memory: An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2812-2812.	21.0	0
36	Nonvolatile Memory: Metalâ€Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2630-2630.	14.9	1

JIE SHANG

#	Article	IF	CITATIONS
37	Metalâ€Organic Framework Nanofilm for Mechanically Flexible Information Storage Applications. Advanced Functional Materials, 2015, 25, 2677-2685.	14.9	133
38	Transparent Electronics: Thermally Stable Transparent Resistive Random Access Memory based on Allâ€Oxide Heterostructures (Adv. Funct. Mater. 15/2014). Advanced Functional Materials, 2014, 24, 2110-2110.	14.9	2
39	A Resistance-Switchable and Ferroelectric Metal–Organic Framework. Journal of the American Chemical Society, 2014, 136, 17477-17483.	13.7	103
40	Thermally Stable Transparent Resistive Random Access Memory based on Allâ€Oxide Heterostructures. Advanced Functional Materials, 2014, 24, 2171-2179.	14.9	150
41	lon transport-related resistive switching in film sandwich structures. Science Bulletin, 2014, 59, 2363-2382.	1.7	9
42	Role of oxadiazole moiety in different D–A polyazothines and related resistive switching properties. Journal of Materials Chemistry C, 2013, 1, 4556.	5.5	56
43	A Multilevel Memory Based on Proton-Doped Polyazomethine with an Excellent Uniformity in Resistive Switching. Journal of the American Chemical Society, 2012, 134, 17408-17411.	13.7	136
44	Resistive switching effects in oxide sandwiched structures. Frontiers of Materials Science, 2012, 6, 183-206.	2.2	68