
Jaroslaw Stolarski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7657400/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and pervasive diagenetic isotope exchange in foraminifera tests is species-dependent. Nature Communications, 2022, 13, 113.	12.8	9
2	Phylogeography of recent Plesiastrea (Scleractinia: Plesiastreidae) based on an integrated taxonomic approach. Molecular Phylogenetics and Evolution, 2022, 172, 107469.	2.7	6
3	Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: Insights from mitochondrial and nuclear phylogenomics. Molecular Phylogenetics and Evolution, 2022, 175, 107565.	2.7	9
4	Molecular and skeletal fingerprints of scleractinian coral biomineralization: From the sea surface to mesophotic depths. Acta Biomaterialia, 2021, 120, 263-276.	8.3	27
5	Photosymbiosis in Late Triassic scleractinian corals from the Italian Dolomites. PeerJ, 2021, 9, e11062.	2.0	3
6	Physiological and Transcriptomic Variability Indicative of Differences in Key Functions Within a Single Coral Colony. Frontiers in Marine Science, 2021, 8, .	2.5	10
7	Impact of seawater Mg2+/Ca2+ on Mg/Ca of asterozoan skeleton – Evidence from culturing and the fossil record. Chemical Geology, 2021, 584, 120557.	3.3	7
8	A modern scleractinian coral with a two-component calcite–aragonite skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	22
9	How corals made rocks through the ages. Global Change Biology, 2020, 26, 31-53.	9.5	60
10	Fish Otolith Matrix Macromolecule-64 (OMM-64) and Its Role in Calcium Carbonate Biomineralization. Crystal Growth and Design, 2020, 20, 5808-5819.	3.0	11
11	The earliest diverging extant scleractinian corals recovered by mitochondrial genomes. Scientific Reports, 2020, 10, 20714.	3.3	16
12	Effects of seawater Mg ²⁺ /Ca ²⁺ ratio and diet on the biomineralization and growth of sea urchins and the relevance of fossil echinoderms to paleoenvironmental reconstructions. Geobiology, 2020, 18, 710-724.	2.4	9
13	Molecular techniques and their limitations shape our view of the holobiont. Zoology, 2019, 137, 125695.	1.2	5
14	Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nature Communications, 2019, 10, 2896.	12.8	34
15	Two Rare Pustulose/spinose Morphotypes of Benthic Foraminifera from Eastern Ross Sea, Antarctica. Journal of Foraminiferal Research, 2019, 49, 405-422.	0.5	5
16	Lattice Shrinkage by Incorporation of Recombinant Starmaker‣ike Protein within Bioinspired Calcium Carbonate Crystals. Chemistry - A European Journal, 2019, 25, 12740-12750.	3.3	20
17	Resolving structure and function of metaorganisms through a holistic framework combining reductionist and integrative approaches. Zoology, 2019, 133, 81-87.	1.2	53
18	A Cenozoic record of seawater uranium in fossil corals. Geochimica Et Cosmochimica Acta, 2019, 250, 173-190.	3.9	13

JAROSLAW STOLARSKI

#	Article	IF	CITATIONS
19	Effects of seawater chemistry (Mg2+/Ca2+ ratio) and diet on the skeletal Mg/Ca ratio in the common sea urchin Paracentrotus lividus. Marine Environmental Research, 2019, 145, 22-26.	2.5	9
20	Polypyrrole microcapsules loaded with gold nanoparticles: Perspectives for biomedical imaging. Synthetic Metals, 2019, 248, 27-34.	3.9	13
21	Uncovering hidden coral diversity: a new cryptic lobophylliid scleractinian from the Indian Ocean. Cladistics, 2019, 35, 301-328.	3.3	25
22	From pristine aragonite to blocky calcite: Exceptional preservation and diagenesis of cephalopod nacre in porous Cretaceous limestones. PLoS ONE, 2018, 13, e0208598.	2.5	27
23	Aragonitic scleractinian corals in the Cretaceous calcitic sea. Geology, 2017, 45, 319-322.	4.4	16
24	Macroporous microspheres and microspheroidal particles from polyhydromethylsiloxane. Colloid and Polymer Science, 2017, 295, 939-944.	2.1	8
25	Sea urchin growth dynamics at microstructural length scale revealed by Mn-labeling and cathodoluminescence imaging. Frontiers in Zoology, 2017, 14, 42.	2.0	11
26	A Cenozoic record of seawater Mg isotopes in well-preserved fossil corals. Geology, 2017, 45, 1039-1042.	4.4	36
27	Evidence for Rhythmicity Pacemaker in the Calcification Process of Scleractinian Coral. Scientific Reports, 2016, 6, 20191.	3.3	13
28	Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evolutionary Biology, 2016, 16, 108.	3.2	126
29	A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change. Scientific Reports, 2016, 6, 27579.	3.3	18
30	Calcium isotopes in scleractinian fossil corals since the Mesozoic: Implications for vital effects and biomineralization through time. Earth and Planetary Science Letters, 2016, 444, 205-214.	4.4	28
31	Influence of open ocean nitrogen supply on the skeletal Î'15N of modern shallow-water scleractinian corals. Earth and Planetary Science Letters, 2016, 441, 125-132.	4.4	34
32	Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions. Global and Planetary Change, 2016, 144, 142-157.	3.5	20
33	Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia). Zoological Journal of the Linnean Society, 2016, 178, 436-481.	2.3	33
34	Photosymbiosis and the expansion of shallow-water corals. Science Advances, 2016, 2, e1601122.	10.3	65
35	Fine-Scale Skeletal Banding Can Distinguish Symbiotic from Asymbiotic Species among Modern and Fossil Scleractinian Corals. PLoS ONE, 2016, 11, e0147066.	2.5	25
36	Microstructural disparity between basal micrabaciids and other Scleractinia: new evidence from Neogene Stephanophyllia. Lethaia, 2015, 48, 417-428.	1.4	8

#	Article	IF	CITATIONS
37	Morphology, microstructure, crystallography, and chemistry of distinct CaCO3deposits formed by early recruits of the scleractinian coralPocillopora damicornis. Journal of Morphology, 2015, 276, 1146-1156.	1.2	2
38	Fossil corals as an archive of secular variations in seawater chemistry since the Mesozoic. Geochimica Et Cosmochimica Acta, 2015, 160, 188-208.	3.9	87
39	Gold-decorated polymer vessel structures as carriers of mRNA cap analogs. Polymer, 2015, 57, 77-87.	3.8	6
40	Ultrascale and microscale growth dynamics of the cidaroid spine of <i>Phyllacanthus imperialis</i> revealed by ²⁶ Mg labeling and NanoSIMS isotopic imaging. Journal of Morphology, 2014, 275, 788-796.	1.2	15
41	Mediterranean Corals Through Time: From Miocene to Present. , 2014, , 257-274.		40
42	Biomineralization in newly settled recruits of the scleractinian coral <i>Pocillopora damicornis</i> . Journal of Morphology, 2014, 275, 1349-1365.	1.2	27
43	A phylogeny reconstruction of the Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scripta, 2014, 43, 661-688.	1.7	65
44	Simultaneous extension of both basic microstructural components in scleractinian coral skeleton during night and daytime, visualized by in situ 86Sr pulse labeling. Journal of Structural Biology, 2014, 185, 79-88.	2.8	21
45	Simultaneous extension of both basic microstructural components in scleractinian coral skeleton during night and daytime, visualized by in situ 86Sr pulse labeling. Journal of Structural Biology, 2014, 185, 79-88.	2.8	7
46	Magnetic-Nanoparticle-Decorated Polypyrrole Microvessels: Toward Encapsulation of mRNA Cap Analogues. Biomacromolecules, 2013, 14, 1867-1876.	5.4	17
47	DIAGENETIC ALTERATION OF TRIASSIC CORAL FROM THE ARAGONITE KONSERVAT-LAGERSTATTE IN ALAKIR CAY, TURKEY: IMPLICATIONS FOR GEOCHEMICAL MEASUREMENTS. Palaios, 2013, 28, 333-342.	1.3	25
48	Skeletal ontogeny in basal scleractinian micrabaciid corals. Journal of Morphology, 2013, 274, 243-257.	1.2	8
49	Deltocyathiidae, an earlyâ€diverging family of Robust corals (Anthozoa, Scleractinia). Zoologica Scripta, 2013, 42, 201-212.	1.7	15
50	Micro―to nanostructure and geochemistry of extant crinoidal echinoderm skeletons. Geobiology, 2013, 11, 29-43.	2.4	29
51	The first modern solitary Agariciidae (Anthozoa, Scleractinia) revealed by molecular and microstructural analysis. Invertebrate Systematics, 2012, 26, 303.	1.3	30
52	Systematics of the coral genus <i>Craterastrea</i> (Cnidaria, Anthozoa, Scleractinia) and description of a new family through combined morphological and molecular analyses. Systematics and Biodiversity, 2012, 10, 417-433.	1.2	56
53	Stable carbon and oxygen isotope compositions of extant crinoidal echinoderm skeletons. Chemical Geology, 2012, 291, 132-140.	3.3	13
54	Skeletal growth dynamics linked to trace-element composition in the scleractinian coral Pocillopora damicornis. Geochimica Et Cosmochimica Acta, 2012, 99, 146-158.	3.9	50

JAROSLAW STOLARSKI

#	Article	IF	CITATIONS
55	Bromide-doped polypyrrole microcapsules modified with gold nanoparticles. Polymer, 2012, 53, 5320-5329.	3.8	15
56	Pulsed 86Sr-labeling and NanoSIMS imaging to study coral biomineralization at ultra-structural length scales. Coral Reefs, 2012, 31, 741-752.	2.2	32
57	Photopolymerized Polypyrrole Microvessels. Chemistry - A European Journal, 2012, 18, 310-320.	3.3	30
58	Pyrene-Loaded Polypyrrole Microvessels. Langmuir, 2011, 27, 12720-12729.	3.5	16
59	Calcareous sponge biomineralization: Ultrastructural and compositional heterogeneity of spicules in Leuconia johnstoni. Journal of Structural Biology, 2011, 173, 99-109.	2.8	17
60	26Mg labeling of the sea urchin regenerating spine: Insights into echinoderm biomineralization process. Journal of Structural Biology, 2011, 176, 119-126.	2.8	33
61	Study of the crystallographic architecture of corals at the nanoscale by scanning transmission X-ray microscopy and transmission electron microscopy. Ultramicroscopy, 2011, 111, 1268-1275.	1.9	59
62	The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evolutionary Biology, 2011, 11, 316.	3.2	153
63	Corallite wall and septal microstructure in scleractinian reef corals: Comparison of molecular clades within the family Faviidae. Journal of Morphology, 2011, 272, 66-88.	1.2	64
64	A unique skeletal microstructure of the deepâ€sea micrabaciid scleractinian corals. Journal of Morphology, 2011, 272, 191-203.	1.2	35
65	Skeletal growth, ultrastructure and composition of the azooxanthellate scleractinian coral Balanophyllia regia. Coral Reefs, 2010, 29, 175-189.	2.2	46
66	A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data. PLoS ONE, 2010, 5, e11490.	2.5	213
67	Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. Geological Society Special Publication, 2010, 336, 211-224.	1.3	37
68	Toluene-Filled Polypyrrole Microvessels: Entrapment and Dynamics of Encapsulated Perylene. Journal of Physical Chemistry B, 2010, 114, 14890-14896.	2.6	13
69	Factors controlling growth of modern tufa: results of a field experiment. Geological Society Special Publication, 2010, 336, 143-191.	1.3	72
70	Searching for new morphological characters in the systematics of scleractinian reef corals: comparison of septal teeth and granules between Atlantic and Pacific Mussidae. Acta Zoologica, 2009, 90, 142-165.	0.8	76
71	Strontiumâ€86 labeling experiments show spatially heterogeneous skeletal formation in the scleractinian coral <i>Porites porites</i> . Geophysical Research Letters, 2009, 36, .	4.0	38
72	Speciation of Mg in biogenic calcium carbonates. Journal of Physics: Conference Series, 2009, 190, 012175.	0.4	14

JAROSLAW STOLARSKI

#	Article	IF	CITATIONS
73	Nanostructural and Geochemical Features of the Jurassic Isocrinid Columnal Ossicles. Acta Palaeontologica Polonica, 2009, 54, 69-75.	0.4	22
74	Hierarchically structured scleractinian coral biocrystals. Journal of Structural Biology, 2008, 161, 74-82.	2.8	54
75	A Cretaceous Scleractinian Coral with a Calcitic Skeleton. Science, 2007, 318, 92-94.	12.6	78
76	Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contributions To Zoology, 2007, 76, 35-54.	0.5	84
77	High-resolution synchrotron radiation studies on natural and thermally annealed scleractinian coral biominerals. Journal of Applied Crystallography, 2007, 40, 2-9.	4.5	35
78	First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies, 2007, 53, 67-78.	1.4	12
79	Towards a new synthesis of evolutionary relationships and classification of Scleractinia. Journal of Paleontology, 2001, 75, 1090-1108.	0.8	15
80	Triassic roots of the amphiastraeid scleractinian corals. Journal of Paleontology, 2001, 75, 34-45.	0.8	4
81	TOWARDS A NEW SYNTHESIS OF EVOLUTIONARY RELATIONSHIPS AND CLASSIFICATION OF SCLERACTINIA. Journal of Paleontology, 2001, 75, 1090-1108.	0.8	54
82	TRIASSIC ROOTS OF THE AMPHIASTRAEID SCLERACTINIAN CORALS. Journal of Paleontology, 2001, 75, 34-45.	0.8	14
83	Origin and phylogeny of Guyniidae (Scleractinia) in the light of microstructural data. Lethaia, 2000, 33, 13-38.	1.4	28
84	Conopora (Stylasteridae, Hydrozoa) from the Eocene of Seymour Island. Antarctic Science, 1998, 10, 487-492.	0.9	1
85	Molecular and Skeletal Fingerprints of Scleractinian Coral Biomineralization from the Sea Surface to Mesophotic Depths. SSRN Electronic Journal, 0, , .	0.4	0