Laertis Ikonomou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7656898/publications.pdf

Version: 2024-02-01

430874 330143 2,794 42 18 37 citations h-index g-index papers 45 45 45 3632 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The peril of the promise of speculative cell banking: Statement from the ISCT Committee on the Ethics of Cell and Gene Therapy. Cytotherapy, 2022, , .	0.7	1
2	Patient access to and ethical considerations of the application of the European Union hospital exemption rule for advanced therapy medicinal products. Cytotherapy, 2022, 24, 686-690.	0.7	21
3	The Coming-of-Age of Lung Generation by Blastocyst Complementation. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 408-410.	5.6	4
4	The Coronavirus Pandemic: A Pitfall or a Fast Track for Validating Cell Therapy Products?. Stem Cells and Development, 2021, 30, 119-127.	2.1	10
5	Derivation of Thyroid Follicular Cells From Pluripotent Stem Cells: Insights From Development and Implications for Regenerative Medicine. Frontiers in Endocrinology, 2021, 12, 666565.	3.5	10
6	All Roads Lead to Rome? Resident or Interspecies Chimera-derived Pulmonary Endothelial Progenitors for Cell-based Therapy. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 251-252.	5.6	0
7	Ethical issues and public communication in the development of cell-based treatments for COVID-19: Lessons from the pandemic. Stem Cell Reports, 2021, 16, 2567-2576.	4.8	9
8	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2019. ERJ Open Research, 2020, 6, 00123-2020.	2.6	2
9	Turning the Tide on Unproven Cell-Based Interventions. Chest, 2020, 157, 774-775.	0.8	O
10	The in vivo genetic program of murine primordial lung epithelial progenitors. Nature Communications, 2020, 11, 635.	12.8	46
11	Technological advances in study of lung regenerative medicine:perspective from the 2019 Vermont lung stem cell conference. Cytotherapy, 2020, 22, 519-520.	0.7	6
12	Translating Basic Research into Safe and Effective Cell-based Treatments for Respiratory Diseases. Annals of the American Thoracic Society, 2019, 16, 657-668.	3.2	23
13	Medical societies, patient education initiatives, public debate and marketing of unproven stem cell interventions. Cytotherapy, 2018, 20, 165-168.	0.7	18
14	Cell, tissue and gene products with marketing authorization in 2018 worldwide. Cytotherapy, 2018, 20, 1401-1413.	0.7	87
15	Derivation and characterization of putative craniofacial mesenchymal progenitor cells from human induced pluripotent stem cells. Stem Cell Research, 2018, 33, 100-109.	0.7	13
16	Developmental engineering: design of clinically efficacious bioartificial tissues through developmental and systems biology. Science China Life Sciences, 2018, 61, 978-981.	4.9	6
17	Co-opting of ClinicalTrials.gov by patient-funded studies. Lancet Respiratory Medicine, the, 2018, 6, 579-581.	10.7	21
18	Unproven Stem Cell Treatments for Lung Disease—An Emerging Public Health Problem. American Journal of Respiratory and Critical Care Medicine, 2017, 195, P13-P14.	5.6	15

#	Article	IF	Citations
19	Development and Bioengineering of Lung Regeneration., 2017,, 237-257.		O
20	Thyroid Progenitors Are Robustly Derived from Embryonic Stem Cells through Transient, Developmental Stage-Specific Overexpression of Nkx2-1. Stem Cell Reports, 2017, 8, 216-225.	4.8	44
21	Pluripotent stem cell differentiation reveals distinct developmental pathways regulating lung versus thyroid lineage specification. Development (Cambridge), 2017, 144, 3879-3893.	2.5	73
22	The Global Emergence of Unregulated Stem Cell Treatments for Respiratory Diseases. Professional Societies Need to Act. Annals of the American Thoracic Society, 2016, 13, 1205-1207.	3.2	28
23	Regeneration of Thyroid Function by Transplantation of Differentiated Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 527-542.	11.1	170
24	Derivation of Endodermal Progenitors From Pluripotent Stem Cells. Journal of Cellular Physiology, 2015, 230, 246-258.	4.1	25
25	Generation And Characterization Of An Nkx2-1-GFP Reporter Mouse. , 2012, , .		0
26	Derivation Of Lung Progenitors From Pluripotent Stem Cells. , 2012, , .		0
27	Efficient Derivation of Purified Lung and Thyroid Progenitors from Embryonic Stem Cells. Cell Stem Cell, 2012, 10, 398-411.	11.1	358
28	Synergistic Interaction between Candida albicans and Commensal Oral Streptococci in a Novel <i>In Vitro</i> Io Nucosal Model. Infection and Immunity, 2012, 80, 620-632.	2.2	205
29	Mouse ESC Differentiation to Nkx2.1+ Lung and Thyroid Progenitors. Bio-protocol, 2012, 2, .	0.4	4
30	Programmatic change: lung disease research in the era of induced pluripotency. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2011, 301, L830-L835.	2.9	6
31	Regeneration and orthotopic transplantation of a bioartificial lung. Nature Medicine, 2010, 16, 927-933.	30.7	980
32	Retinoschisin (RS1) Interacts with Negatively Charged Lipid Bilayers in the Presence of Ca ²⁺ : An Atomic Force Microscopy Study. Biochemistry, 2010, 49, 7023-7032.	2.5	19
33	Human isletâ€derived precursor cells can cycle between epithelial clusters and mesenchymal phenotypes. Journal of Cellular and Molecular Medicine, 2009, 13, 2570-2581.	3.6	18
34	The Complementarity of the Technical Tools of Tissue Engineering and the Concepts of Artificial Organs for the Design of Functional Bioartificial Tissues. Artificial Organs, 2008, 32, 742-746.	1.9	5
35	î²-catenin signalling in mesenchymal islet-derived precursor cells. Cell Proliferation, 2008, 41, 474-491.	5.3	10
36	Human Islet-Derived Precursor Cells Are Mesenchymal Stromal Cells That Differentiate and Mature to Hormone-Expressing Cells In Vivo. Stem Cells, 2007, 25, 3215-3222.	3.2	110

#	Article	IF	CITATION
37	Effect of Partial Medium Replacement on Cell Growth and Protein Production for the High-Fiveâ,,¢ insect cell line. Cytotechnology, 2004, 44, 67-76.	1.6	15
38	Insect cell culture for industrial production of recombinant proteins. Applied Microbiology and Biotechnology, 2003, 62, 1-20.	3.6	282
39	Microcarrier Culture of Lepidopteran Cell Lines: Implications for Growth and Recombinant Protein Production. Biotechnology Progress, 2002, 18, 1345-1355.	2.6	23
40	Supernatant proteolytic activities of High-Five insect cells grown in serum-free culture. Biotechnology Letters, 2002, 24, 965-969.	2.2	13
41	DESIGN OF AN EFFICIENT MEDIUM FOR INSECT CELL GROWTH AND RECOMBINANT PROTEIN PRODUCTION. In Vitro Cellular and Developmental Biology - Animal, 2001, 37, 549.	1.5	54
42	Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Disease 2021. American Journal of Physiology - Lung Cellular and Molecular Physiology, 0, , .	2.9	5