William B Isaacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765528/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunology, Immunotherapy, 2022, 71, 943-951.	2.0	9
2	Association of germline rare pathogenic mutations in guidelineâ€recommended genes with prostate cancer progression: A metaâ€analysis. Prostate, 2022, 82, 107-119.	1.2	4
3	The HOXB13 variant X285K is associated with clinical significance and early age at diagnosis in African American prostate cancer patients. British Journal of Cancer, 2022, 126, 791-796.	2.9	13
4	Health inequity drives disease biology to create disparities in prostate cancer outcomes. Journal of Clinical Investigation, 2022, 132, .	3.9	17
5	KLK3 germline mutation I179T complements DNA repair genes for predicting prostate cancer progression. Prostate Cancer and Prostatic Diseases, 2022, , .	2.0	3
6	Germline <i>BRCA2</i> , <i>ATM</i> and <i>CHEK2</i> alterations shape somatic mutation landscapes in prostate cancer Journal of Clinical Oncology, 2022, 40, 148-148.	0.8	0
7	The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Current Opinion in Oncology, 2022, Publish Ahead of Print, .	1.1	0
8	Inherited risk assessment and its clinical utility for predicting prostate cancer from diagnostic prostate biopsies. Prostate Cancer and Prostatic Diseases, 2022, 25, 422-430.	2.0	12
9	Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Molecular Cancer Research, 2022, 20, 1013-1020.	1.5	3
10	Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. European Urology, 2021, 79, 353-361.	0.9	28
11	Performance of Three Inherited Risk Measures for Predicting Prostate Cancer Incidence and Mortality: A Population-based Prospective Analysis. European Urology, 2021, 79, 419-426.	0.9	36
12	A novel method for detection of exfoliated prostate cancer cells in urine by RNA in situ hybridization. Prostate Cancer and Prostatic Diseases, 2021, 24, 220-232.	2.0	3
13	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
14	Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Modern Pathology, 2021, 34, 1185-1193.	2.9	61
15	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight, 2021, 6, .	2.3	22
16	Association of prostate cancer polygenic risk score with number and laterality of tumor cores in active surveillance patients. Prostate, 2021, 81, 703-709.	1.2	11
17	The somatic mutation landscape of germline <i>CHEK2-</i> altered prostate cancer Journal of Clinical Oncology, 2021, 39, 5084-5084.	0.8	2
18	Specific Detection of Prostate Cancer Cells in Urine by RNA In Situ Hybridization. Journal of Urology, 2021. 206. 37-43.	0.2	4

#	Article	IF	CITATIONS
19	Observed evidence for guidelineâ€recommended genes in predicting prostate cancer risk from a large populationâ€based cohort. Prostate, 2021, 81, 1002-1008.	1.2	10
20	Genetic Susceptibility for Low Testosterone in Men and Its Implications in Biology and Screening: Data from the UK Biobank. European Urology Open Science, 2021, 29, 36-46.	0.2	4
21	Prostate Cancer Predisposition. Urologic Clinics of North America, 2021, 48, 283-296.	0.8	12
22	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	2.6	38
23	Combined Longitudinal Clinical and Autopsy Phenomic Assessment in Lethal Metastatic Prostate Cancer: Recommendations for Advancing Precision Medicine. European Urology Open Science, 2021, 30, 47-62.	0.2	2
24	Incorporation of Polygenic Risk Score into Guidelines for Inherited Risk Assessment for Prostate Cancer. European Urology, 2021, 80, 139-141.	0.9	4
25	Inherited risk assessment of prostate cancer: it takes three to do it right. Prostate Cancer and Prostatic Diseases, 2020, 23, 59-61.	2.0	8
26	Germline <i>BLM</i> mutations and metastatic prostate cancer. Prostate, 2020, 80, 235-237.	1.2	15
27	Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39, 6935-6949.	2.6	60
28	Genomic and Clinicopathologic Characterization of <i>ATM</i> -deficient Prostate Cancer. Clinical Cancer Research, 2020, 26, 4869-4881.	3.2	18
29	Validation of a prostate cancer polygenic risk score. Prostate, 2020, 80, 1314-1321.	1.2	23
30	Feasibility and performance of a novel probe panel to detect somatic DNA copy number alterations in clinical specimens for predicting prostate cancer progression. Prostate, 2020, 80, 1253-1262.	1.2	4
31	Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank. British Journal of Cancer, 2020, 123, 1356-1359.	2.9	11
32	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	0.9	32
33	Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. Journal of Clinical Oncology, 2020, 38, 2798-2811.	0.8	170
34	Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention Trial. Cancer Prevention Research, 2020, 13, 853-862.	0.7	8
35	Rare Germline Pathogenic Mutations of DNA Repair Genes Are Most Strongly Associated with Grade Group 5 Prostate Cancer. European Urology Oncology, 2020, 3, 224-230.	2.6	41
36	Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Molecular Cancer Research, 2020, 18, 1815-1824.	1.5	14

#	Article	IF	CITATIONS
37	<i>Trichomonas vaginalis</i> infection and prostateâ€specific antigen concentration: Insights into prostate involvement and prostate disease risk. Prostate, 2019, 79, 1622-1628.	1.2	11
38	Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. American Journal of Pathology, 2019, 189, 2311-2322.	1.9	13
39	Concept and benchmarks for assessing narrowâ€sense validity of genetic risk score values. Prostate, 2019, 79, 1099-1105.	1.2	18
40	Current progress and questions in germline genetics of prostate cancer. Asian Journal of Urology, 2019, 6, 3-9.	0.5	11
41	Molecular Characterization and Clinical Outcomes of Primary Gleason Pattern 5 Prostate Cancer After Radical Prostatectomy. JCO Precision Oncology, 2019, 3, 1-13.	1.5	12
42	Single-Nucleotide Polymorphism–Based Genetic Risk Score and Patient Age at Prostate Cancer Diagnosis. JAMA Network Open, 2019, 2, e1918145.	2.8	20
43	Mannose Receptor–positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease. European Urology Oncology, 2019, 2, 429-436.	2.6	46
44	HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate, 2019, 79, 414-424.	1.2	39
45	Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. European Urology, 2019, 75, 743-749.	0.9	138
46	A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sciences, 2019, 217, 128-140.	2.0	32
47	ATM loss in primary prostate cancer: Analysis of >1000 cases using a validated clinical-grade immunohistochemistry (IHC) assay Journal of Clinical Oncology, 2019, 37, 5069-5069.	0.8	3
48	Updated insights into genetic contribution to prostate cancer predisposition: focus on HOXB13. Canadian Journal of Urology, 2019, 26, 12-13.	0.0	5
49	A comprehensive evaluation of <i>CHEK2</i> germline mutations in men with prostate cancer. Prostate, 2018, 78, 607-615.	1.2	57
50	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	9.4	182
51	Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. European Urology, 2018, 74, 218-225.	0.9	140
52	Intraductal/ductal histology and lymphovascular invasion are associated with germline DNAâ€repair gene mutations in prostate cancer. Prostate, 2018, 78, 401-407.	1.2	105
53	Genetic factors influencing prostate cancer risk in Norwegian men. Prostate, 2018, 78, 186-192.	1.2	11
54	Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017. Journal of Clinical Oncology, 2018, 36, 414-424.	0.8	155

#	Article	IF	CITATIONS
55	Differences in inherited risk among relatives of hereditary prostate cancer patients using genetic risk score. Prostate, 2018, 78, 1063-1068.	1.2	1
56	Germline mutations in <i>PPFIBP2</i> are associated with lethal prostate cancer. Prostate, 2018, 78, 1222-1228.	1.2	12
57	Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. British Journal of Cancer, 2018, 119, 347-356.	2.9	63
58	Germline mutations in <scp>DNA</scp> repair genes are associated with bladder cancer risk and unfavourable prognosis. BJU International, 2018, 122, 808-813.	1.3	15
59	Sustained influence of infections on prostateâ€specific antigen concentration: An analysis of changes over 10 years of followâ€up. Prostate, 2018, 78, 1024-1034.	1.2	4
60	Effect of germline DNA repair gene mutations on outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide Journal of Clinical Oncology, 2018, 36, 221-221.	0.8	0
61	Donald S Coffey, a man who meant so much to so many. American Journal of Clinical and Experimental Urology, 2018, 6, 41-42.	0.4	Ο
62	gsSKAT: Rapid gene set analysis and multiple testing correction for rareâ€variant association studies using weighted linear kernels. Genetic Epidemiology, 2017, 41, 297-308.	0.6	9
63	Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of <i>TP53</i> Missense Mutation in Prostate Cancer. Clinical Cancer Research, 2017, 23, 4693-4703.	3.2	62
64	Association between variants in genes involved in the immune response and prostate cancer risk in men randomized to the finasteride arm in the Prostate Cancer Prevention Trial. Prostate, 2017, 77, 908-919.	1.2	21
65	Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. European Urology, 2017, 71, 740-747.	0.9	256
66	Insight into infectionâ€mediated prostate damage: Contrasting patterns of Câ€reactive protein and prostateâ€specific antigen levels during infection. Prostate, 2017, 77, 1325-1334.	1.2	8
67	MSH2 Loss in Primary Prostate Cancer. Clinical Cancer Research, 2017, 23, 6863-6874.	3.2	122
68	A genetic variant near <i>GATA3</i> implicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate, 2017, 77, 1213-1220.	1.2	19
69	What Do Myeloma, Breast Cancer, and Prostate Cancer Have in Common?. European Urology, 2017, 71, 166-167.	0.9	1
70	The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Scientific Reports, 2017, 7, 17978.	1.6	38
71	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	1.5	34
72	Somatic molecular subtyping of prostate tumors from <i>HOXB13</i> G84E carriers. Oncotarget, 2017, 8, 22772-22782.	0.8	9

#	Article	IF	CITATIONS
73	Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ€Control Sequencing Studies. Genetic Epidemiology, 2016, 40, 461-469.	0.6	5
74	Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: Results from the prostate cancer prevention trial. Prostate, 2016, 76, 1120-1129.	1.2	60
75	Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate, 2016, 76, 479-490.	1.2	12
76	Key genes involved in the immune response are generally not associated with intraprostatic inflammation in men without a prostate cancer diagnosis: Results from the prostate cancer prevention trial. Prostate, 2016, 76, 565-574.	1.2	5
77	Infectious mononucleosis, other infections and prostate-specific antigen concentration as a marker of prostate involvement during infection. International Journal of Cancer, 2016, 138, 2221-2230.	2.3	11
78	Peripheral Zone Inflammation Is Not Strongly Associated With Lower Urinary Tract Symptom Incidence and Progression in the Placebo Arm of the Prostate Cancer Prevention Trial. Prostate, 2016, 76, 1399-1408.	1.2	6
79	Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer. Journal of Physical Education and Sports Management, 2016, 2, a000752.	0.5	24
80	Inflammation, Microbiota, and Prostate Cancer. European Urology Focus, 2016, 2, 374-382.	1.6	40
81	REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. American Journal of Human Genetics, 2016, 99, 877-885.	2.6	1,555
82	Rare Variation in <i>TET2</i> Is Associated with Clinically Relevant Prostate Carcinoma in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1456-1463.	1.1	22
83	DNA-Repair Gene Mutations in Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 1802-1805.	13.9	26
84	Screening for familial and hereditary prostate cancer. International Journal of Cancer, 2016, 138, 2579-2591.	2.3	49
85	Cenome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Human Genetics, 2016, 135, 923-938.	1.8	37
86	Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clinical Cancer Research, 2016, 22, 448-458.	3.2	29
87	Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget, 2016, 7, 72593-72607.	0.8	71
88	Variation in genes involved in the immune response and prostate cancer risk in the placebo arm of the Prostate Cancer Prevention Trial. Prostate, 2015, 75, 1403-1418.	1.2	25
89	Polymorphisms Influencing Prostate-Specific Antigen Concentration May Bias Genome-Wide Association Studies on Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 88-93.	1.1	4
90	Generalizability of established prostate cancer risk variants in men of <scp>A</scp> frican ancestry. International Journal of Cancer, 2015, 136, 1210-1217.	2.3	62

#	Article	IF	CITATIONS
91	Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Human Genetics, 2015, 134, 439-450.	1.8	45
92	The <i>HOXB13</i> G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1366-1372.	1.1	47
93	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
94	The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520, 353-357.	13.7	1,185
95	Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas. Clinical Cancer Research, 2015, 21, 5619-5629.	3.2	56
96	Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer. Nature Communications, 2015, 6, 8469.	5.8	51
97	Do Environmental Factors Modify the Genetic Risk of Prostate Cancer?. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 213-220.	1.1	12
98	Understanding the Mechanisms of Androgen Deprivation Resistance in Prostate Cancer at the Molecular Level. European Urology, 2015, 67, 470-479.	0.9	225
99	AR splice variant 7 (AR-V7) and response to taxanes in men with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2015, 33, 138-138.	0.8	14
100	Genome-Wide Association Scan for Variants Associated with Early-Onset Prostate Cancer. PLoS ONE, 2014, 9, e93436.	1.1	25
101	A Peripheral Circulating TH1 Cytokine Profile Is Inversely Associated with Prostate Cancer Risk in CLUE II. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2561-2567.	1.1	18
102	Association analysis of 9,560 prostate cancer cases from the International Consortium of Prostate Cancer Genetics confirms the role of reported prostate cancer associated SNPs for familial disease. Human Genetics, 2014, 133, 347-356.	1.8	24
103	Prevalence of the <i><scp>HOXB13</scp></i> â€ <scp>C84E</scp> prostate cancer risk allele in men treated with radical prostatectomy. BJU International, 2014, 113, 830-835.	1.3	21
104	Leveraging population admixture to characterize the heritability of complex traits. Nature Genetics, 2014, 46, 1356-1362.	9.4	69
105	Rb Loss Is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma. Clinical Cancer Research, 2014, 20, 890-903.	3.2	275
106	Telomere length as a risk factor for hereditary prostate cancer. Prostate, 2014, 74, 359-364.	1.2	27
107	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348
108	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408

#	Article	IF	CITATIONS
109	AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. New England Journal of Medicine, 2014, 371, 1028-1038.	13.9	2,233
110	Genome-wide Scan of 29,141 African Americans Finds No Evidence of Directional Selection since Admixture. American Journal of Human Genetics, 2014, 95, 437-444.	2.6	69
111	Identification of a novel germline <i>SPOP</i> mutation in a family with hereditary prostate cancer. Prostate, 2014, 74, 983-990.	1.2	18
112	Androgen receptor splice variant, AR-V7, and resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2014, 32, 5001-5001.	0.8	20
113	Association of the <i>HOXB13 G84E</i> mutation with increased risk for prostate cancer and other malignancies Journal of Clinical Oncology, 2014, 32, 1558-1558.	0.8	0
114	Genome-wide Association Study Identifies Loci at ATF7IP and KLK2 Associated with Percentage of Circulating Free PSA. Neoplasia, 2013, 15, 95-IN30.	2.3	11
115	Loss of PTEN Is Associated with Aggressive Behavior in ERG-Positive Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2333-2344.	1.1	121
116	DNA Methylation Alterations Exhibit Intraindividual Stability and Interindividual Heterogeneity in Prostate Cancer Metastases. Science Translational Medicine, 2013, 5, 169ra10.	5.8	231
117	HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Human Genetics, 2013, 132, 5-14.	1.8	166
118	Genome-wide Association Study Identifies Genetic Determinants of Urine PCA3 Levels in Men. Neoplasia, 2013, 15, 448-IN26.	2.3	7
119	Genetic markers associated with early cancerâ€specific mortality following prostatectomy. Cancer, 2013, 119, 2405-2412.	2.0	81
120	Nucleotide resolution analysis of <i><scp>TMPRSS2</scp></i> and <i><scp>ERG</scp></i> rearrangements in prostate cancer. Journal of Pathology, 2013, 230, 174-183.	2.1	41
121	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	1.4	118
122	The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis, 2013, 34, 1260-1264.	1.3	50
123	Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent. Prostate Cancer, 2013, 2013, 1-12.	0.4	180
124	A Genome-Wide Assessment of Variability in Human Serum Metabolism. Human Mutation, 2013, 34, 515-524.	1.1	42
125	Tracking the clonal origin of lethal prostate cancer. Journal of Clinical Investigation, 2013, 123, 4918-4922.	3.9	440
126	Infections and inflammation in prostate cancer. American Journal of Clinical and Experimental Urology, 2013, 1, 3-11.	0.4	42

#	Article	IF	CITATIONS
127	Variation in <i>IL10</i> and Other Genes Involved in the Immune Response and in Oxidation and Prostate Cancer Recurrence. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1774-1782.	1.1	49
128	A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants. Carcinogenesis, 2012, 33, 598-603.	1.3	38
129	Genome-wide association study identifies a new locus JMJD1C at 10q21 that may influence serum androgen levels in men. Human Molecular Genetics, 2012, 21, 5222-5228.	1.4	79
130	The Role of Genetic Markers in the Management of Prostate Cancer. European Urology, 2012, 62, 577-587.	0.9	92
131	Distinct Transcriptional Programs Mediated by the Ligand-Dependent Full-Length Androgen Receptor and Its Splice Variants in Castration-Resistant Prostate Cancer. Cancer Research, 2012, 72, 3457-3462.	0.4	518
132	Potential Impact of Adding Genetic Markers to Clinical Parameters in Predicting Prostate Biopsy Outcomes in Men Following an Initial Negative Biopsy: Findings from the REDUCE Trial. European Urology, 2012, 62, 953-961.	0.9	85
133	Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Familial Cancer, 2012, 11, 595-600.	0.9	15
134	Germline Mutations in <i>HOXB13</i> and Prostate-Cancer Risk. New England Journal of Medicine, 2012, 366, 141-149.	13.9	566
135	Association of prostate cancer risk with snps in regions containing androgen receptor binding sites captured by ChIPâ€Onâ€chip analyses. Prostate, 2012, 72, 376-385.	1.2	15
136	Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate, 2012, 72, 410-426.	1.2	14
137	DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Molecular Medicine, 2012, 4, 743-760.	3.3	92
138	Genome-wide two-locus epistasis scans in prostate cancer using two European populations. Human Genetics, 2012, 131, 1225-1234.	1.8	17
139	Validation of prostate cancer risk-related loci identified from genome-wide association studies using family-based association analysis: evidence from the International Consortium for Prostate Cancer Genetics (ICPCG). Human Genetics, 2012, 131, 1095-1103.	1.8	21
140	Inherited susceptibility for aggressive prostate cancer. Asian Journal of Andrology, 2012, 14, 415-418.	0.8	6
141	Identification of New Differentially Methylated Genes That Have Potential Functional Consequences in Prostate Cancer. PLoS ONE, 2012, 7, e48455.	1.1	65
142	Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genetics, 2011, 204, 375-381.	0.2	51
143	GENETIC BASIS FOR PROSTATE CANCER. , 2011, , 39-52.		0
144	Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nature Genetics, 2011, 43, 570-573.	9.4	198

#	Article	IF	CITATIONS
145	Polygenic Risk Score Improves Prostate Cancer Risk Prediction: Results from the Stockholm-1 Cohort Study. European Urology, 2011, 60, 21-28.	0.9	117
146	Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer. Prostate, 2011, 71, 421-430.	1.2	38
147	Functional annotation of risk loci identified through genomeâ€wide association studies for prostate cancer. Prostate, 2011, 71, 955-963.	1.2	25
148	A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate, 2011, 71, 1656-1667.	1.2	177
149	Immunomodulatory ILâ€18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. International Journal of Cancer, 2011, 129, 424-432.	2.3	42
150	Genome-wide copy-number variation analysis identifies common genetic variants at 20p13 associated with aggressiveness of prostate cancer. Carcinogenesis, 2011, 32, 1057-1062.	1.3	33
151	Human polymorphisms at long non-coding RNAs (IncRNAs) and association with prostate cancer risk. Carcinogenesis, 2011, 32, 1655-1659.	1.3	132
152	High-Throughput Screen Identifies Novel Inhibitors of Cancer Biomarker α-Methylacyl Coenzyme A Racemase (AMACR/P504S). Molecular Cancer Therapeutics, 2011, 10, 825-838.	1.9	46
153	Genome-wide association study identifies new prostate cancer susceptibility loci. Human Molecular Genetics, 2011, 20, 3867-3875.	1.4	160
154	Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Human Molecular Genetics, 2011, 20, 2869-2878.	1.4	43
155	Prostate Cancer Predisposition Loci and Risk of Metastatic Disease and Prostate Cancer Recurrence. Clinical Cancer Research, 2011, 17, 1075-1081.	3.2	44
156	Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Human Molecular Genetics, 2011, 20, 3322-3329.	1.4	28
157	The landscape of recombination in African Americans. Nature, 2011, 476, 170-175.	13.7	319
158	Increased gene copy number of ERG on chromosome 21 but not TMPRSS2–ERG fusion predicts outcome in prostatic adenocarcinomas. Modern Pathology, 2011, 24, 1511-1520.	2.9	57
159	A Genome-Wide Survey over the ChIP-On-Chip Identified Androgen Receptor-Binding Genomic Regions Identifies a Novel Prostate Cancer Susceptibility Locus at 12q13.13. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2396-2403.	1.1	10
160	Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 23-32.	1.1	88
161	Germ-line sequence variants of PTEN do not have an important role in hereditary and non-hereditary prostate cancer susceptibility. Journal of Human Genetics, 2011, 56, 496-502.	1.1	10
162	PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients. Clinical Cancer Research, 2011, 17, 6563-6573.	3.2	309

#	Article	IF	CITATIONS
163	Genetic Variants in the <i>LEPR</i> , <i>CRY1</i> , <i>RNASEL</i> , <i>IL4</i> , and <i>ARVCF</i> Genes Are Prognostic Markers of Prostate Cancer-Specific Mortality. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1928-1936.	1.1	68
164	Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans. PLoS Genetics, 2011, 7, e1001387.	1.5	117
165	A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. , 2011, 71, 1656.		1
166	Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men. Prostate, 2010, 70, 425-432.	1.2	52
167	Monocyte chemotactic proteinâ€1 (MCPâ€1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate, 2010, 70, 473-481.	1.2	62
168	Association of <i>CASP8 D302H</i> polymorphism with reduced risk of aggressive prostate carcinoma. Prostate, 2010, 70, 646-653.	1.2	18
169	Genomeâ€wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses. Prostate, 2010, 70, 735-744.	1.2	22
170	Prostate cancer riskâ€associated variants reported from genomeâ€wide association studies: Metaâ€analysis and their contribution to genetic Variation. Prostate, 2010, 70, 1729-1738.	1.2	61
171	Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 2010, 42, 668-675.	9.4	539
172	XMRV: A New Virus in Prostate Cancer?. Cancer Research, 2010, 70, 10028-10033.	0.4	72
173	Refining the Prostate Cancer Genetic Association within the <i>JAZF1</i> Gene on Chromosome 7p15.2. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1349-1355.	1.1	26
174	Comparison of Two Methods for Estimating Absolute Risk of Prostate Cancer Based on Single Nucleotide Polymorphisms and Family History. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1083-1088.	1.1	15
175	Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proceedings of the United States of America, 2010, 107, 2136-2140.	3.3	100
176	Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies. PLoS ONE, 2010, 5, e10858.	1.1	28
177	Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3443-3448.	3.3	124
178	Macrophage Inhibitory Cytokine 1: A New Prognostic Marker in Prostate Cancer. Clinical Cancer Research, 2009, 15, 6658-6664.	3.2	129
179	Prostate Cancer Risk Associated Loci in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2145-2149.	1.1	57
180	Fine mapping association study and functional analysis implicate a SNP in MSMB at 10q11 as a causal variant for prostate cancer risk. Human Molecular Genetics, 2009, 18, 1368-1375.	1.4	103

#	Article	IF	CITATIONS
181	Sequence Variants at 22q13 Are Associated with Prostate Cancer Risk. Cancer Research, 2009, 69, 10-15.	0.4	109
182	Ligand-Independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone-Refractory Prostate Cancer. Cancer Research, 2009, 69, 16-22.	0.4	939
183	Association of a Germ-Line Copy Number Variation at 2p24.3 and Risk for Aggressive Prostate Cancer. Cancer Research, 2009, 69, 2176-2179.	0.4	73
184	A Novel Prostate Cancer Susceptibility Locus at 19q13. Cancer Research, 2009, 69, 2720-2723.	0.4	50
185	Genetic Variants and Family History Predict Prostate Cancer Similar to Prostate-Specific Antigen. Clinical Cancer Research, 2009, 15, 1105-1111.	3.2	35
186	Genetic and epigenetic inactivation of <i>LPL</i> gene in human prostate cancer. International Journal of Cancer, 2009, 124, 734-738.	2.3	32
187	Endoglin (CD105) as a urinary and serum marker of prostate cancer. International Journal of Cancer, 2009, 124, 664-669.	2.3	51
188	Genomeâ€wide expression analysis of recently processed formalinâ€fixed paraffin embedded human prostate tissues. Prostate, 2009, 69, 214-218.	1.2	17
189	Genetic and epigenetic inactivation of <i>TNFRSF10C</i> in human prostate cancer. Prostate, 2009, 69, 327-335.	1.2	25
190	Comprehensive mutational analysis and mRNA isoform quantification of <i>TP63</i> in normal and neoplastic human prostate cells. Prostate, 2009, 69, 559-569.	1.2	19
191	Association of reported prostate cancer risk alleles with PSA levels among men without a diagnosis of prostate cancer. Prostate, 2009, 69, 419-427.	1.2	36
192	Association of <i>IL10</i> and Other immune response―and obesityâ€related genes with prostate cancer in CLUE II. Prostate, 2009, 69, 874-885.	1.2	117
193	Individual and cumulative effect of prostate cancer riskâ€essociated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate, 2009, 69, 1195-1205.	1.2	93
194	Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate, 2009, 69, 1565-1572.	1.2	76
195	Human prostateâ€infiltrating CD8 ⁺ T lymphocytes are oligoclonal and PDâ€1 ⁺ . Prostate, 2009, 69, 1694-1703.	1.2	206
196	TMPRSS2–ERG gene fusion status in minute (minimal) prostatic adenocarcinoma. Modern Pathology, 2009, 22, 1415-1422.	2.9	48
197	Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nature Genetics, 2009, 41, 1055-1057.	9.4	218
198	Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 2009, 15, 559-565.	15.2	596

#	Article	IF	CITATIONS
199	Does diabetes mellitus modify the association between 17q12 risk variant and prostate cancer aggressiveness?. BJU International, 2009, 104, 1200-1203.	1.3	5
200	A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate, 2008, 68, 306-320.	1.2	167
201	Carbohydrate restriction, prostate cancer growth, and the insulinâ€like growth factor axis. Prostate, 2008, 68, 11-19.	1.2	140
202	Chromosome 8q24 risk variants in hereditary and nonâ€hereditary prostate cancer patients. Prostate, 2008, 68, 489-497.	1.2	36
203	Association between sequence variants at 17q12 and 17q24.3 and prostate cancer risk in European and African Americans. Prostate, 2008, 68, 691-697.	1.2	41
204	Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate, 2008, 68, 872-882.	1.2	51
205	Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate, 2008, 68, 1257-1262.	1.2	47
206	COLPH2 and MYO6: Putative prostate cancer markers localized to the Golgi apparatus. Prostate, 2008, 68, 1387-1395.	1.2	69
207	An evaluation of PCR primer sets used for detection of <i>Propionibacterium acnes</i> in prostate tissue samples. Prostate, 2008, 68, 1492-1495.	1.2	38
208	Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathology, 2008, 21, 1156-1167.	2.9	363
209	Evidence for two independent prostate cancer risk–associated loci in the HNF1B gene at 17q12. Nature Genetics, 2008, 40, 1153-1155.	9.4	158
210	Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 2008, 40, 281-283.	9.4	357
211	A multigenic approach to evaluating prostate cancer risk in a systematic replication study. Cancer Genetics and Cytogenetics, 2008, 183, 94-98.	1.0	6
212	Cumulative Association of Five Genetic Variants with Prostate Cancer. New England Journal of Medicine, 2008, 358, 910-919.	13.9	589
213	Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer. Neoplasia, 2008, 10, 897-IN37.	2.3	99
214	Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals TH17 and Treg Skewing. Clinical Cancer Research, 2008, 14, 3254-3261.	3.2	367
215	Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Letters, 2008, 270, 173-180.	3.2	19
216	DNA Hypomethylation Arises Later in Prostate Cancer Progression than CpG Island Hypermethylation and Contributes to Metastatic Tumor Heterogeneity. Cancer Research, 2008, 68, 8954-8967.	0.4	255

#	Article	IF	CITATIONS
217	Association of Prostate Cancer Risk Variants with Clinicopathologic Characteristics of the Disease. Clinical Cancer Research, 2008, 14, 5819-5824.	3.2	61
218	α-Catenin overrides Src-dependent activation of β-catenin oncogenic signaling. Molecular Cancer Therapeutics, 2008, 7, 1386-1397.	1.9	23
219	Two Genome-wide Association Studies of Aggressive Prostate Cancer Implicate Putative Prostate Tumor Suppressor Gene DAB2IP. Journal of the National Cancer Institute, 2007, 99, 1836-1844.	3.0	235
220	Association Between Two Unlinked Loci at 8q24 and Prostate Cancer Risk Among European Americans. Journal of the National Cancer Institute, 2007, 99, 1525-1533.	3.0	126
221	Deletion of a Small Consensus Region at 6q15, Including the <i>MAP3K7</i> Gene, Is Significantly Associated with High-Grade Prostate Cancers. Clinical Cancer Research, 2007, 13, 5028-5033.	3.2	62
222	Integration of Somatic Deletion Analysis of Prostate Cancers and Germline Linkage Analysis of Prostate Cancer Families Reveals Two Small Consensus Regions for Prostate Cancer Genes at 8p. Cancer Research, 2007, 67, 4098-4103.	0.4	32
223	Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Human Molecular Genetics, 2007, 16, 1271-1278.	1.4	31
224	Genetic variability in inflammation pathways and prostate cancer risk. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 250-259.	0.8	46
225	Design, Synthesis, and In Vitro Testing of α-Methylacyl-CoA Racemase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 2700-2707.	2.9	52
226	Assembly of Inflammation-Related Genes for Pathway-Focused Genetic Analysis. PLoS ONE, 2007, 2, e1035.	1.1	89
227	Acne and risk of prostate cancer. International Journal of Cancer, 2007, 121, 2688-2692.	2.3	78
228	Multiple genomic alterations on 21q22 predict various <i>TMPRSS2/ERG</i> fusion transcripts in human prostate cancers. Genes Chromosomes and Cancer, 2007, 46, 972-980.	1.5	41
229	Germline copy number polymorphisms involving larger than 100 kb are uncommon in normal subjects. Prostate, 2007, 67, 227-233.	1.2	3
230	RNASEL Arg462Gln polymorphism and prostate cancer in PLCO. Prostate, 2007, 67, 849-854.	1.2	24
231	DNA copy number alterations in prostate cancers: A combined analysis of published CGH studies. Prostate, 2007, 67, 692-700.	1.2	141
232	Mutational analysis ofSPANX genes in families with X-Linked prostate cancer. Prostate, 2007, 67, 820-828.	1.2	19
233	Polymorphic variants in αâ€methylacylâ€CoA racemase and prostate cancer. Prostate, 2007, 67, 1487-1497.	1.2	20
234	Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genetics, 2007, 39, 631-637.	9.4	818

#	Article	IF	CITATIONS
235	Inflammation in prostate carcinogenesis. Nature Reviews Cancer, 2007, 7, 256-269.	12.8	1,352
236	Fine-mapping the putative chromosome 17q21–22 prostate cancer susceptibility gene to a 10ÂcM region based on linkage analysis. Human Genetics, 2007, 121, 49-55.	1.8	30
237	A Novel Role of Myosin VI in Human Prostate Cancer. American Journal of Pathology, 2006, 169, 1843-1854.	1.9	133
238	Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Experimental Cell Research, 2006, 312, 831-843.	1.2	75
239	Sexually Transmitted Infections and Prostatic Inflammation/Cell Damage as Measured by Serum Prostate Specific Antigen Concentration. Journal of Urology, 2006, 175, 1937-1942.	0.2	60
240	Meta-analysis of association of rare mutations and common sequence variants in theMSR1 gene and prostate cancer risk. Prostate, 2006, 66, 728-737.	1.2	36
241	GermlineATBF1 mutations and prostate cancer risk. Prostate, 2006, 66, 1082-1085.	1.2	20
242	Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate, 2006, 66, 1729-1743.	1.2	64
243	A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study. Prostate, 2006, 66, 1556-1564.	1.2	47
244	Two-locus genome-wide linkage scan for prostate cancer susceptibility genes with an interaction effect. Human Genetics, 2006, 118, 716-724.	1.8	16
245	Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array. Genes Chromosomes and Cancer, 2006, 45, 1018-1032.	1.5	64
246	Germ-Line Mutation of NKX3.1 Cosegregates with Hereditary Prostate Cancer and Alters the Homeodomain Structure and Function. Cancer Research, 2006, 66, 69-77.	0.4	48
247	Truncating Variants in p53AIP1 Disrupting DNA Damage–Induced Apoptosis Are Associated with Prostate Cancer Risk. Cancer Research, 2006, 66, 10302-10307.	0.4	9
248	Comprehensive genetic evaluation of common E-cadherin sequence variants and prostate cancer risk: strong confirmation of functional promoter SNP. Human Genetics, 2005, 118, 339-347.	1.8	29
249	A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Human Genetics, 2005, 117, 307-316.	1.8	30
250	Explaining racial differences in prostate cancer in the United States: Sociology or biology?. Prostate, 2005, 62, 243-252.	1.2	117
251	Peroxisomal branched chain fatty acid ?-oxidation pathway is upregulated in prostate cancer. Prostate, 2005, 63, 316-323.	1.2	155
252	Sequence variation within the 5′ regulatory regions of the vitamin D binding protein and receptor genes and prostate cancer risk. Prostate, 2005, 64, 272-282.	1.2	34

#	Article	IF	CITATIONS
253	Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate, 2005, 64, 67-74.	1.2	92
254	Genome-wide screen for prostate cancer susceptibility genes in men with clinically significant disease. Prostate, 2005, 64, 356-361.	1.2	43
255	Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Research, 2005, 15, 1477-1486.	2.4	38
256	A Nonclassic CCAAT Enhancer Element Binding Protein Binding Site Contributes to $\hat{I}\pm$ -Methylacyl-CoA Racemase Expression in Prostate Cancer. Molecular Cancer Research, 2005, 3, 110-118.	1.5	13
257	Stronger Association between Obesity and Biochemical Progression after Radical Prostatectomy among Men Treated in the Last 10 Years. Clinical Cancer Research, 2005, 11, 2883-2888.	3.2	60
258	Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis, 2005, 26, 1170-1181.	1.3	330
259	A Germline DNA Polymorphism Enhances Alternative Splicing of the KLF6 Tumor Suppressor Gene and Is Associated with Increased Prostate Cancer Risk. Cancer Research, 2005, 65, 1213-1222.	0.4	202
260	Sequence Variants in Toll-Like Receptor Gene Cluster (TLR6-TLR1-TLR10) and Prostate Cancer Risk. Journal of the National Cancer Institute, 2005, 97, 525-532.	3.0	169
261	A Combined Genomewide Linkage Scan of 1,233 Families for Prostate Cancer–Susceptibility Genes Conducted by the International Consortium for Prostate Cancer Genetics. American Journal of Human Genetics, 2005, 77, 219-229.	2.6	138
262	Evidence for a general cancer susceptibility locus at 3p24 in families with hereditary prostate cancer. Cancer Letters, 2005, 219, 177-182.	3.2	1
263	COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis, 2004, 25, 961-966.	1.3	95
264	Sequence Variants of Toll-Like Receptor 4 Are Associated with Prostate Cancer Risk. Cancer Research, 2004, 64, 2918-2922.	0.4	214
265	Combined Genome-Wide Scan for Prostate Cancer Susceptibility Genes. Journal of the National Cancer Institute, 2004, 96, 1240-1247.	3.0	72
266	Identification of a prostate cancer susceptibility locus on chromosome 7q11–21 in Jewish families. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1939-1944.	3.3	23
267	A Polymorphism in the CDKN1B Gene Is Associated with Increased Risk of Hereditary Prostate Cancer. Cancer Research, 2004, 64, 1997-1999.	0.4	88
268	Identification of Aryl Hydrocarbon Receptor as a Putative Wnt/β-Catenin Pathway Target Gene in Prostate Cancer Cells. Cancer Research, 2004, 64, 2523-2533.	0.4	66
269	H6D Polymorphism in Macrophage-Inhibitory Cytokine-1 Gene Associated With Prostate Cancer. Journal of the National Cancer Institute, 2004, 96, 1248-1254.	3.0	111
270	Improved Biomarkers for Prostate Cancer: A Definite Need. Journal of the National Cancer Institute, 2004, 96, 813-815.	3.0	24

#	Article	IF	CITATIONS
271	Androgen receptor outwits prostate cancer drugs. Nature Medicine, 2004, 10, 26-27.	15.2	242
272	Sequence variants in the 3′→5′ deoxyribonuclease TREX2: identification in a genetic screen and effects on catalysis by the recombinant proteins. Advances in Enzyme Regulation, 2004, 44, 37-49.	2.9	11
273	Mutational analysis of PINX1 in hereditary prostate cancer. Prostate, 2004, 60, 298-302.	1.2	22
274	Trefoil factor 3 overexpression in prostatic carcinoma: Prognostic importance using tissue microarrays. Prostate, 2004, 61, 215-227.	1.2	85
275	Expression mapping at 12p12-13 in advanced prostate carcinoma. International Journal of Cancer, 2004, 109, 668-672.	2.3	21
276	Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. Journal of Cellular Biochemistry, 2004, 91, 459-477.	1.2	164
277	Hypermethylation of CpG Islands in Primary and Metastatic Human Prostate Cancer. Cancer Research, 2004, 64, 1975-1986.	0.4	467
278	Cyclooxygenases in cancer: progress and perspective. Cancer Letters, 2004, 215, 1-20.	3.2	368
279	Interaction effect of PTEN and CDKN1B chromosomal regions on prostate cancer linkage. Human Genetics, 2003, -1, 1-1.	1.8	17
280	Xq27-28 deletions in prostate carcinoma. Genes Chromosomes and Cancer, 2003, 37, 381-388.	1.5	14
281	Polymorphisms in theCYP1A1 gene are associated with prostate cancer risk. International Journal of Cancer, 2003, 106, 375-378.	2.3	56
282	Evaluation of SRD5A2 sequence variants in susceptibility to hereditary and sporadic prostate cancer. Prostate, 2003, 56, 37-44.	1.2	24
283	Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: Implications for finasteride therapy of prostate carcinoma. Prostate, 2003, 57, 134-139.	1.2	111
284	Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate, 2003, 57, 320-325.	1.2	75
285	Human prostate cancer precursors and pathobiology. Urology, 2003, 62, 55-62.	0.5	229
286	Familial aggregation of bothersome benign prostatic hyperplasia symptoms. Urology, 2003, 61, 781-785.	0.5	26
287	Pathological and molecular aspects of prostate cancer. Lancet, The, 2003, 361, 955-964.	6.3	421
288	Prostate Cancer. New England Journal of Medicine, 2003, 349, 366-381.	13.9	970

#	Article	IF	CITATIONS
289	Common Sequence Variants of the Macrophage Scavenger Receptor 1 Gene Are Associated with Prostate Cancer Risk. American Journal of Human Genetics, 2003, 72, 208-212.	2.6	94
290	Looking Beyond Morphology: Cancer Gene Expression Profiling Using DNA Microarrays. Cancer Investigation, 2003, 21, 937-949.	0.6	45
291	α-Methylacyl-CoA Racemase. American Journal of Surgical Pathology, 2003, 27, 1128-1133.	2.1	120
292	Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2',5'-oligoadenylates. Cancer Research, 2003, 63, 6795-801.	0.4	133
293	Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Research, 2003, 63, 7365-76.	0.4	100
294	Physical and Transcript Map of the Hereditary Prostate Cancer Region at Xq27. Genomics, 2002, 79, 41-50.	1.3	24
295	Germline sequence variants of the LZTS1 gene are associated with prostate cancer risk. Cancer Genetics and Cytogenetics, 2002, 137, 1-7.	1.0	21
296	Focus on prostate cancer. Cancer Cell, 2002, 2, 113-116.	7.7	83
297	Transmission/disequilibrium tests of androgen receptor and glutathione S-transferase pi variants in prostate cancer families. International Journal of Cancer, 2002, 98, 938-942.	2.3	10
298	Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Human Genetics, 2002, 110, 122-129.	1.8	71
299	CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification?. Human Genetics, 2002, 110, 553-560.	1.8	152
300	Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate, 2002, 51, 189-200.	1.2	119
301	Mutational analysis of ETV6 in prostate carcinoma. Prostate, 2002, 52, 305-310.	1.2	19
302	Sequence variants in the human 25-hydroxyvitamin D3 1-?-hydroxylase (CYP27B1) gene are not associated with prostate cancer risk. Prostate, 2002, 53, 175-178.	1.2	20
303	In vitro evidence for complex modes of nuclear β-catenin signaling during prostate growth and tumorigenesis. Oncogene, 2002, 21, 2679-2694.	2.6	160
304	Ligand-dependent inhibition of β-catenin/TCF signaling by androgen receptor. Oncogene, 2002, 21, 8453-8469.	2.6	144
305	Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nature Genetics, 2002, 32, 321-325.	9.4	318
306	High mobility group protein I(Y): a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Research, 2002, 62, 647-51.	0.4	49

#	Article	IF	CITATIONS
307	Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Research, 2002, 62, 1784-9.	0.4	63
308	Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Research, 2002, 62, 2220-6.	0.4	384
309	Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Research, 2002, 62, 2253-7.	0.4	119
310	Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk. Cancer Research, 2002, 62, 6485-8.	0.4	43
311	GSTP1 CpG Island Hypermethylation Is Responsible for the Absence of GSTP1 Expression in Human Prostate Cancer Cells. American Journal of Pathology, 2001, 159, 1815-1826.	1.9	219
312	Evaluation of Linkage and Association of HPC2/ELAC2 in Patients with Familial or Sporadic Prostate Cancer. American Journal of Human Genetics, 2001, 68, 901-911.	2.6	93
313	Linkage and Association Studies of Prostate Cancer Susceptibility: Evidence for Linkage at 8p22-23. American Journal of Human Genetics, 2001, 69, 341-350.	2.6	137
314	Linkage of prostate cancer susceptibility loci to chromosome 1. Human Genetics, 2001, 108, 335-345.	1.8	86
315	From the editorial office. Prostate, 2001, 48, 127-127.	1.2	0
316	Methylation and mutational analysis of p27kip1 in prostate carcinoma. Prostate, 2001, 48, 248-253.	1.2	35
317	Linkage and association of CYP17 gene in hereditary and sporadic prostate cancer. International Journal of Cancer, 2001, 95, 354-359.	2.3	48
318	Multiple antibodies to titin immunoreact with AHNAK and localize to the mitotic spindle machinery. Cytoskeleton, 2001, 50, 101-113.	4.4	18
319	Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Human Genetics, 2001, 108, 430-435.	1.8	53
320	Detection and analysis of ?-catenin mutations in prostate cancer. Prostate, 2000, 45, 323-334.	1.2	167
321	G1/S cell cycle proteins as markers of aggressive prostate carcinoma. Urology, 2000, 55, 316-322.	0.5	15
322	LOSS OF HETEROZYGOSITY AT 12P12–13 IN PRIMARY AND METASTATIC PROSTATE ADENOCARCINOMA. Journal of Urology, 2000, 164, 192-196.	0.2	55
323	Deletion mapping at 12p12-13 in metastatic prostate cancer. , 1999, 25, 270-276.		42
324	No evidence for a role ofBRCA1 orBRCA2 mutations in Ashkenazi Jewish families with hereditary prostate cancer. , 1999, 39, 280-284.		49

19

#	Article	IF	CITATIONS
325	In Swedish Families with Hereditary Prostate Cancer, Linkage to the HPC1 Locus on Chromosome 1q24-25 Is Restricted to Families with Early-Onset Prostate Cancer. American Journal of Human Genetics, 1999, 65, 134-140.	2.6	73
326	Evidence for a prostate cancer susceptibility locus on the X chromosome Nature Genetics, 1998, 20, 175-179.	9.4	641
327	E1A Transformed Normal Human Prostate Epithelial Cells Contain a 16q Deletion. Cancer Genetics and Cytogenetics, 1998, 103, 155-163.	1.0	6
328	BIOLOGICAL AGGRESSIVENESS OF HEREDITARY PROSTATE CANCER: LONG-TERM EVALUATION FOLLOWING RADICAL PROSTATECTOMY. Journal of Urology, 1998, 160, 660-663.	0.2	69
329	VITAMIN D RECEPTOR POLYMORPHISMS AND LETHAL PROSTATE CANCER. Journal of Urology, 1998, 160, 1405-1409.	0.2	56
330	Molecular advances in prostate cancer. Current Opinion in Oncology, 1997, 9, 101-107.	1.1	71
331	Genomic Organization of the HumanKAI1Metastasis-Suppressor Gene. Genomics, 1997, 41, 25-32.	1.3	62
332	Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes and Cancer, 1997, 19, 90-96.	1.5	169
333	Relation between aberrant α-catenin expression and loss of E-cadherin function in prostate cancer. , 1997, 74, 374-377.		82
334	Physical Mapping of Chromosome 8p22 Markers and Their Homozygous Deletion in a Metastatic Prostate Cancer. Genomics, 1996, 35, 46-54.	1.3	104
335	Structure and Methylation-Associated Silencing of a Gene within a Homozygously Deleted Region of Human Chromosome Band 8p22. Genomics, 1996, 35, 55-65.	1.3	114
336	DNA methylation, molecular genetic, and linkage studies in prostate cancer. Prostate, 1996, 29, 36-44.	1.2	29
337	Evaluation of Serum and Seminal Plasma Markers in the Diagnosis of Canine Prostatic Disorders. Journal of Veterinary Internal Medicine, 1995, 9, 149-153.	0.6	77
338	Molecular genetics and chromosomal alterations in prostate cancer. Cancer, 1995, 75, 2004-2012.	2.0	31
339	Frequent Loss of Chromosome Arms 8p and 13q in Collecting Duct Carcinoma (CDC) of the Kidney. Genes Chromosomes and Cancer, 1995, 12, 76-80.	1.5	75
340	Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate, 1995, 26, 35-39.	1.2	123
341	Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genetics, 1995, 11, 210-212.	9.4	593
342	Interleukin-2 transfected prostate cancer cells generate a local antitumor effect in vivo. Prostate, 1994, 24, 244-251.	1.2	48

#	Article	IF	CITATIONS
343	Molecular and cellular changes associated with the acquisition of metastatic ability by prostatic cancer cells. Prostate, 1994, 25, 249-265.	1.2	79
344	Assignment of the Human α-Catenin Gene (CTNNA1) to Chromosome 5q21-q22. Genomics, 1994, 19, 188-190.	1.3	43
345	Molecular and cellular markers for metastatic prostate cancer. Cancer and Metastasis Reviews, 1993, 12, 3-10.	2.7	17
346	Hereditary Prostate Cancer: Epidemiologic and Clinical Features. Journal of Urology, 1993, 150, 797-802.	0.2	519
347	Effect of pentosan, a novel cancer chemotherapeutic agent, on prostate cancer cell growth and motility. Prostate, 1992, 20, 233-241.	1.2	23
348	The Effects of Basic Fibroblast Growth Factor and suramin on Cell Motility and Growth of Rat Prostate Cancer Cells. Journal of Urology, 1991, 145, 199-202.	0.2	65
349	Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays, 1991, 13, 157-161.	1.2	65
350	Differential effects of growth factor antagonists on neoplastic and normal prostatic cells. Prostate, 1990, 17, 327-336.	1.2	17
351	Establishment and characterization of seven dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate, 1986, 9, 261-281.	1.2	367