William B Isaacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765528/publications.pdf

Version: 2024-02-01

351 papers 38,458 citations

94 h-index 183 g-index

359 all docs

359 docs citations

359 times ranked 35517 citing authors

#	Article	IF	CITATIONS
1	AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. New England Journal of Medicine, 2014, 371, 1028-1038.	13.9	2,233
2	REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. American Journal of Human Genetics, 2016, 99, 877-885.	2.6	1,555
3	Inflammation in prostate carcinogenesis. Nature Reviews Cancer, 2007, 7, 256-269.	12.8	1,352
4	The evolutionary history of lethal metastatic prostate cancer. Nature, 2015, 520, 353-357.	13.7	1,185
5	Prostate Cancer. New England Journal of Medicine, 2003, 349, 366-381.	13.9	970
6	Ligand-Independent Androgen Receptor Variants Derived from Splicing of Cryptic Exons Signify Hormone-Refractory Prostate Cancer. Cancer Research, 2009, 69, 16-22.	0.4	939
7	Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genetics, 2007, 39, 631-637.	9.4	818
8	Evidence for a prostate cancer susceptibility locus on the X chromosome Nature Genetics, 1998, 20, 175-179.	9.4	641
9	Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 2009, 15, 559-565.	15.2	596
10	Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genetics, 1995, 11, 210-212.	9.4	593
11	Cumulative Association of Five Genetic Variants with Prostate Cancer. New England Journal of Medicine, 2008, 358, 910-919.	13.9	589
12	Germline Mutations in <i>HOXB13</i> and Prostate-Cancer Risk. New England Journal of Medicine, 2012, 366, 141-149.	13.9	566
13	Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 2010, 42, 668-675.	9.4	539
14	Hereditary Prostate Cancer: Epidemiologic and Clinical Features. Journal of Urology, 1993, 150, 797-802.	0.2	519
15	Distinct Transcriptional Programs Mediated by the Ligand-Dependent Full-Length Androgen Receptor and Its Splice Variants in Castration-Resistant Prostate Cancer. Cancer Research, 2012, 72, 3457-3462.	0.4	518
16	Hypermethylation of CpG Islands in Primary and Metastatic Human Prostate Cancer. Cancer Research, 2004, 64, 1975-1986.	0.4	467
17	Tracking the clonal origin of lethal prostate cancer. Journal of Clinical Investigation, 2013, 123, 4918-4922.	3.9	440
18	Pathological and molecular aspects of prostate cancer. Lancet, The, 2003, 361, 955-964.	6.3	421

#	Article	IF	CITATIONS
19	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	9.4	408
20	Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Research, 2002, 62, 2220-6.	0.4	384
21	Cyclooxygenases in cancer: progress and perspective. Cancer Letters, 2004, 215, 1-20.	3.2	368
22	Establishment and characterization of seven dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate, 1986, 9, 261-281.	1.2	367
23	Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals TH17 and Treg Skewing. Clinical Cancer Research, 2008, 14, 3254-3261.	3.2	367
24	Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Modern Pathology, 2008, 21, 1156-1167.	2.9	363
25	Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 2008, 40, 281-283.	9.4	357
26	Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science, 2014, 345, 1251343.	6.0	348
27	Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis, 2005, 26, 1170-1181.	1.3	330
28	The landscape of recombination in African Americans. Nature, 2011, 476, 170-175.	13.7	319
29	Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nature Genetics, 2002, 32, 321-325.	9.4	318
30	PTEN Protein Loss by Immunostaining: Analytic Validation and Prognostic Indicator for a High Risk Surgical Cohort of Prostate Cancer Patients. Clinical Cancer Research, 2011, 17, 6563-6573.	3.2	309
31	Rb Loss Is Characteristic of Prostatic Small Cell Neuroendocrine Carcinoma. Clinical Cancer Research, 2014, 20, 890-903.	3.2	275
32	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	9.4	264
33	Germline Mutations in ATM and BRCA1/2 Distinguish Risk for Lethal and Indolent Prostate Cancer and are Associated with Early Age at Death. European Urology, 2017, 71, 740-747.	0.9	256
34	DNA Hypomethylation Arises Later in Prostate Cancer Progression than CpG Island Hypermethylation and Contributes to Metastatic Tumor Heterogeneity. Cancer Research, 2008, 68, 8954-8967.	0.4	255
35	Androgen receptor outwits prostate cancer drugs. Nature Medicine, 2004, 10, 26-27.	15.2	242
36	Two Genome-wide Association Studies of Aggressive Prostate Cancer Implicate Putative Prostate Tumor Suppressor Gene DAB2IP. Journal of the National Cancer Institute, 2007, 99, 1836-1844.	3.0	235

#	Article	IF	Citations
37	DNA Methylation Alterations Exhibit Intraindividual Stability and Interindividual Heterogeneity in Prostate Cancer Metastases. Science Translational Medicine, 2013, 5, 169ra10.	5.8	231
38	Human prostate cancer precursors and pathobiology. Urology, 2003, 62, 55-62.	0.5	229
39	Understanding the Mechanisms of Androgen Deprivation Resistance in Prostate Cancer at the Molecular Level. European Urology, 2015, 67, 470-479.	0.9	225
40	GSTP1 CpG Island Hypermethylation Is Responsible for the Absence of GSTP1 Expression in Human Prostate Cancer Cells. American Journal of Pathology, 2001, 159, 1815-1826.	1.9	219
41	Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nature Genetics, 2009, 41, 1055-1057.	9.4	218
42	Sequence Variants of Toll-Like Receptor 4 Are Associated with Prostate Cancer Risk. Cancer Research, 2004, 64, 2918-2922.	0.4	214
43	Human prostateâ€infiltrating CD8 ⁺ T lymphocytes are oligoclonal and PDâ€1 ⁺ . Prostate, 2009, 69, 1694-1703.	1.2	206
44	A Germline DNA Polymorphism Enhances Alternative Splicing of the KLF6 Tumor Suppressor Gene and Is Associated with Increased Prostate Cancer Risk. Cancer Research, 2005, 65, 1213-1222.	0.4	202
45	Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nature Genetics, 2011, 43, 570-573.	9.4	198
46	Sequencing of prostate cancers identifies new cancer genes, routes of progression and drug targets. Nature Genetics, 2018, 50, 682-692.	9.4	182
47	Global Patterns of Prostate Cancer Incidence, Aggressiveness, and Mortality in Men of African Descent. Prostate Cancer, 2013, 2013, 1-12.	0.4	180
48	A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate, 2011, 71, 1656-1667.	1.2	177
49	Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019. Journal of Clinical Oncology, 2020, 38, 2798-2811.	0.8	170
50	Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes and Cancer, 1997, 19, 90-96.	1.5	169
51	Sequence Variants in Toll-Like Receptor Gene Cluster (TLR6-TLR1-TLR10) and Prostate Cancer Risk. Journal of the National Cancer Institute, 2005, 97, 525-532.	3.0	169
52	Detection and analysis of ?-catenin mutations in prostate cancer. Prostate, 2000, 45, 323-334.	1.2	167
53	A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate, 2008, 68, 306-320.	1.2	167
54	HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Human Genetics, 2013, 132, 5-14.	1.8	166

#	Article	IF	CITATIONS
55	Pathological and molecular mechanisms of prostate carcinogenesis: Implications for diagnosis, detection, prevention, and treatment. Journal of Cellular Biochemistry, 2004, 91, 459-477.	1.2	164
56	In vitro evidence for complex modes of nuclear \hat{l}^2 -catenin signaling during prostate growth and tumorigenesis. Oncogene, 2002, 21, 2679-2694.	2.6	160
57	Genome-wide association study identifies new prostate cancer susceptibility loci. Human Molecular Genetics, 2011, 20, 3867-3875.	1.4	160
58	Evidence for two independent prostate cancer risk–associated loci in the HNF1B gene at 17q12. Nature Genetics, 2008, 40, 1153-1155.	9.4	158
59	Peroxisomal branched chain fatty acid ?-oxidation pathway is upregulated in prostate cancer. Prostate, 2005, 63, 316-323.	1.2	155
60	Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017. Journal of Clinical Oncology, 2018, 36, 414-424.	0.8	155
61	CYP3A4-V and prostate cancer in African Americans: causal or confounding association because of population stratification?. Human Genetics, 2002, 110, 553-560.	1.8	152
62	Ligand-dependent inhibition of \hat{l}^2 -catenin/TCF signaling by androgen receptor. Oncogene, 2002, 21, 8453-8469.	2.6	144
63	DNA copy number alterations in prostate cancers: A combined analysis of published CGH studies. Prostate, 2007, 67, 692-700.	1.2	141
64	Carbohydrate restriction, prostate cancer growth, and the insulinâ€like growth factor axis. Prostate, 2008, 68, 11-19.	1.2	140
65	Germline DNA-repair Gene Mutations and Outcomes in Men with Metastatic Castration-resistant Prostate Cancer Receiving First-line Abiraterone and Enzalutamide. European Urology, 2018, 74, 218-225.	0.9	140
66	A Combined Genomewide Linkage Scan of 1,233 Families for Prostate Cancer–Susceptibility Genes Conducted by the International Consortium for Prostate Cancer Genetics. American Journal of Human Genetics, 2005, 77, 219-229.	2.6	138
67	Germline Mutations in ATM and BRCA1/2 Are Associated with Grade Reclassification in Men on Active Surveillance for Prostate Cancer. European Urology, 2019, 75, 743-749.	0.9	138
68	Linkage and Association Studies of Prostate Cancer Susceptibility: Evidence for Linkage at 8p22-23. American Journal of Human Genetics, 2001, 69, 341-350.	2.6	137
69	A Novel Role of Myosin VI in Human Prostate Cancer. American Journal of Pathology, 2006, 169, 1843-1854.	1.9	133
70	Effects of RNase L mutations associated with prostate cancer on apoptosis induced by 2',5'-oligoadenylates. Cancer Research, 2003, 63, 6795-801.	0.4	133
71	Human polymorphisms at long non-coding RNAs (IncRNAs) and association with prostate cancer risk. Carcinogenesis, 2011, 32, 1655-1659.	1.3	132
72	Macrophage Inhibitory Cytokine 1: A New Prognostic Marker in Prostate Cancer. Clinical Cancer Research, 2009, 15, 6658-6664.	3.2	129

#	Article	IF	CITATIONS
73	Association Between Two Unlinked Loci at 8q24 and Prostate Cancer Risk Among European Americans. Journal of the National Cancer Institute, 2007, 99, 1525-1533.	3.0	126
74	Acute inflammatory proteins constitute the organic matrix of prostatic corpora amylacea and calculi in men with prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3443-3448.	3.3	124
75	Allelic loss of the retinoblastoma gene in primary human prostatic adenocarcinomas. Prostate, 1995, 26, 35-39.	1.2	123
76	MSH2 Loss in Primary Prostate Cancer. Clinical Cancer Research, 2017, 23, 6863-6874.	3.2	122
77	Loss of PTEN Is Associated with Aggressive Behavior in ERG-Positive Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 2333-2344.	1.1	121
78	α-Methylacyl-CoA Racemase. American Journal of Surgical Pathology, 2003, 27, 1128-1133.	2.1	120
79	Gene expression signature of benign prostatic hyperplasia revealed by cDNA microarray analysis. Prostate, 2002, 51, 189-200.	1.2	119
80	Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Research, 2002, 62, 2253-7.	0.4	119
81	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	1.4	118
82	Explaining racial differences in prostate cancer in the United States: Sociology or biology?. Prostate, 2005, 62, 243-252.	1.2	117
83	Association of <i>IL10</i> and Other immune response―and obesityâ€related genes with prostate cancer in CLUE II. Prostate, 2009, 69, 874-885.	1.2	117
84	Polygenic Risk Score Improves Prostate Cancer Risk Prediction: Results from the Stockholm-1 Cohort Study. European Urology, 2011, 60, 21-28.	0.9	117
85	Characterizing Genetic Risk at Known Prostate Cancer Susceptibility Loci in African Americans. PLoS Genetics, 2011, 7, e1001387.	1.5	117
86	Structure and Methylation-Associated Silencing of a Gene within a Homozygously Deleted Region of Human Chromosome Band 8p22. Genomics, 1996, 35, 55-65.	1.3	114
87	Decreased gene expression of steroid 5 alpha-reductase 2 in human prostate cancer: Implications for finasteride therapy of prostate carcinoma. Prostate, 2003, 57, 134-139.	1.2	111
88	H6D Polymorphism in Macrophage-Inhibitory Cytokine-1 Gene Associated With Prostate Cancer. Journal of the National Cancer Institute, 2004, 96, 1248-1254.	3.0	111
89	Sequence Variants at 22q13 Are Associated with Prostate Cancer Risk. Cancer Research, 2009, 69, 10-15.	0.4	109
90	Intraductal/ductal histology and lymphovascular invasion are associated with germline DNAâ€repair gene mutations in prostate cancer. Prostate, 2018, 78, 401-407.	1.2	105

#	Article	IF	Citations
91	Physical Mapping of Chromosome 8p22 Markers and Their Homozygous Deletion in a Metastatic Prostate Cancer. Genomics, 1996, 35, 46-54.	1.3	104
92	Fine mapping association study and functional analysis implicate a SNP in MSMB at $10q11$ as a causal variant for prostate cancer risk. Human Molecular Genetics, 2009, 18, 1368-1375.	1.4	103
93	Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2136-2140.	3.3	100
94	Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Research, 2003, 63, 7365-76.	0.4	100
95	Homozygous Deletions and Recurrent Amplifications Implicate New Genes Involved in Prostate Cancer. Neoplasia, 2008, 10, 897-IN37.	2.3	99
96	COX-2 gene promoter haplotypes and prostate cancer risk. Carcinogenesis, 2004, 25, 961-966.	1.3	95
97	Common Sequence Variants of the Macrophage Scavenger Receptor 1 Gene Are Associated with Prostate Cancer Risk. American Journal of Human Genetics, 2003, 72, 208-212.	2.6	94
98	Evaluation of Linkage and Association of HPC2/ELAC2 in Patients with Familial or Sporadic Prostate Cancer. American Journal of Human Genetics, 2001, 68, 901-911.	2.6	93
99	Individual and cumulative effect of prostate cancer riskâ€associated variants on clinicopathologic variables in 5,895 prostate cancer patients. Prostate, 2009, 69, 1195-1205.	1.2	93
100	Modulation of CXCL14 (BRAK) expression in prostate cancer. Prostate, 2005, 64, 67-74.	1.2	92
101	The Role of Genetic Markers in the Management of Prostate Cancer. European Urology, 2012, 62, 577-587.	0.9	92
102	DIAPH3 governs the cellular transition to the amoeboid tumour phenotype. EMBO Molecular Medicine, 2012, 4, 743-760.	3.3	92
103	Assembly of Inflammation-Related Genes for Pathway-Focused Genetic Analysis. PLoS ONE, 2007, 2, e1035.	1.1	89
104	A Polymorphism in the CDKN1B Gene Is Associated with Increased Risk of Hereditary Prostate Cancer. Cancer Research, 2004, 64, 1997-1999.	0.4	88
105	Validation of Genome-Wide Prostate Cancer Associations in Men of African Descent. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 23-32.	1.1	88
106	Linkage of prostate cancer susceptibility loci to chromosome 1. Human Genetics, 2001, 108, 335-345.	1.8	86
107	Trefoil factor 3 overexpression in prostatic carcinoma: Prognostic importance using tissue microarrays. Prostate, 2004, 61, 215-227.	1.2	85
108	Potential Impact of Adding Genetic Markers to Clinical Parameters in Predicting Prostate Biopsy Outcomes in Men Following an Initial Negative Biopsy: Findings from the REDUCE Trial. European Urology, 2012, 62, 953-961.	0.9	85

#	Article	IF	Citations
109	Focus on prostate cancer. Cancer Cell, 2002, 2, 113-116.	7.7	83
110	Relation between aberrant \hat{l}_{\pm} -catenin expression and loss of E-cadherin function in prostate cancer., 1997, 74, 374-377.		82
111	Genetic markers associated with early cancerâ€specific mortality following prostatectomy. Cancer, 2013, 119, 2405-2412.	2.0	81
112	Molecular and cellular changes associated with the acquisition of metastatic ability by prostatic cancer cells. Prostate, 1994, 25, 249-265.	1.2	79
113	Genome-wide association study identifies a new locus JMJD1C at 10q21 that may influence serum androgen levels in men. Human Molecular Genetics, 2012, 21, 5222-5228.	1.4	79
114	Acne and risk of prostate cancer. International Journal of Cancer, 2007, 121, 2688-2692.	2.3	78
115	Evaluation of Serum and Seminal Plasma Markers in the Diagnosis of Canine Prostatic Disorders. Journal of Veterinary Internal Medicine, 1995, 9, 149-153.	0.6	77
116	Estimation of absolute risk for prostate cancer using genetic markers and family history. Prostate, 2009, 69, 1565-1572.	1.2	76
117	Frequent Loss of Chromosome Arms 8p and 13q in Collecting Duct Carcinoma (CDC) of the Kidney. Genes Chromosomes and Cancer, 1995, 12, 76-80.	1.5	75
118	Genome-wide scan for prostate cancer susceptibility genes in the Johns Hopkins hereditary prostate cancer families. Prostate, 2003, 57, 320-325.	1.2	75
119	Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines. Experimental Cell Research, 2006, 312, 831-843.	1.2	7 5
120	In Swedish Families with Hereditary Prostate Cancer, Linkage to the HPC1 Locus on Chromosome 1q24-25 Is Restricted to Families with Early-Onset Prostate Cancer. American Journal of Human Genetics, 1999, 65, 134-140.	2.6	73
121	Association of a Germ-Line Copy Number Variation at 2p24.3 and Risk for Aggressive Prostate Cancer. Cancer Research, 2009, 69, 2176-2179.	0.4	73
122	Combined Genome-Wide Scan for Prostate Cancer Susceptibility Genes. Journal of the National Cancer Institute, 2004, 96, 1240-1247.	3.0	72
123	XMRV: A New Virus in Prostate Cancer?. Cancer Research, 2010, 70, 10028-10033.	0.4	72
124	Molecular advances in prostate cancer. Current Opinion in Oncology, 1997, 9, 101-107.	1.1	71
125	Polymorphic GGC repeats in the androgen receptor gene are associated with hereditary and sporadic prostate cancer risk. Human Genetics, 2002, 110, 122-129.	1.8	71
126	Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget, 2016, 7, 72593-72607.	0.8	71

#	Article	IF	CITATIONS
127	BIOLOGICAL AGGRESSIVENESS OF HEREDITARY PROSTATE CANCER: LONG-TERM EVALUATION FOLLOWING RADICAL PROSTATECTOMY. Journal of Urology, 1998, 160, 660-663.	0.2	69
128	GOLPH2 and MYO6: Putative prostate cancer markers localized to the Golgi apparatus. Prostate, 2008, 68, 1387-1395.	1.2	69
129	Leveraging population admixture to characterize the heritability of complex traits. Nature Genetics, 2014, 46, 1356-1362.	9.4	69
130	Genome-wide Scan of 29,141 African Americans Finds No Evidence of Directional Selection since Admixture. American Journal of Human Genetics, 2014, 95, 437-444.	2.6	69
131	Genetic Variants in the <i>LEPR</i> , <i>CRY1</i> , <i>RNASEL</i> , <i>IL4</i> , and <i>ARVCF</i> Genes Are Prognostic Markers of Prostate Cancer-Specific Mortality. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 1928-1936.	1.1	68
132	Identification of Aryl Hydrocarbon Receptor as a Putative Wnt/ \hat{l}^2 -Catenin Pathway Target Gene in Prostate Cancer Cells. Cancer Research, 2004, 64, 2523-2533.	0.4	66
133	The Effects of Basic Fibroblast Growth Factor and suramin on Cell Motility and Growth of Rat Prostate Cancer Cells. Journal of Urology, 1991, 145, 199-202.	0.2	65
134	Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis. BioEssays, 1991, 13, 157-161.	1.2	65
135	Identification of New Differentially Methylated Genes That Have Potential Functional Consequences in Prostate Cancer. PLoS ONE, 2012, 7, e48455.	1.1	65
136	Systematic replication study of reported genetic associations in prostate cancer: Strong support for genetic variation in the androgen pathway. Prostate, 2006, 66, 1729-1743.	1.2	64
137	Comprehensive assessment of DNA copy number alterations in human prostate cancers using Affymetrix 100K SNP mapping array. Genes Chromosomes and Cancer, 2006, 45, 1018-1032.	1.5	64
138	Constitutively active androgen receptor splice variants AR-V3, AR-V7 and AR-V9 are co-expressed in castration-resistant prostate cancer metastases. British Journal of Cancer, 2018, 119, 347-356.	2.9	63
139	Joint effect of HSD3B1 and HSD3B2 genes is associated with hereditary and sporadic prostate cancer susceptibility. Cancer Research, 2002, 62, 1784-9.	0.4	63
140	Genomic Organization of the HumanKAl1Metastasis-Suppressor Gene. Genomics, 1997, 41, 25-32.	1.3	62
141	Deletion of a Small Consensus Region at 6q15, Including the <i>MAP3K7</i> Gene, Is Significantly Associated with High-Grade Prostate Cancers. Clinical Cancer Research, 2007, 13, 5028-5033.	3.2	62
142	Monocyte chemotactic proteinâ€1 (MCPâ€1/CCL2) is associated with prostatic growth dysregulation and benign prostatic hyperplasia. Prostate, 2010, 70, 473-481.	1.2	62
143	Generalizability of established prostate cancer risk variants in men of <scp>A</scp> frican ancestry. International Journal of Cancer, 2015, 136, 1210-1217.	2.3	62
144	Analytic, Preanalytic, and Clinical Validation of p53 IHC for Detection of <i>TP53</i> Missense Mutation in Prostate Cancer. Clinical Cancer Research, 2017, 23, 4693-4703.	3.2	62

#	Article	IF	CITATIONS
145	Association of Prostate Cancer Risk Variants with Clinicopathologic Characteristics of the Disease. Clinical Cancer Research, 2008, 14, 5819-5824.	3.2	61
146	Prostate cancer riskâ€associated variants reported from genomeâ€wide association studies: Metaâ€analysis and their contribution to genetic Variation. Prostate, 2010, 70, 1729-1738.	1.2	61
147	Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Modern Pathology, 2021, 34, 1185-1193.	2.9	61
148	Stronger Association between Obesity and Biochemical Progression after Radical Prostatectomy among Men Treated in the Last 10 Years. Clinical Cancer Research, 2005, 11, 2883-2888.	3.2	60
149	Sexually Transmitted Infections and Prostatic Inflammation/Cell Damage as Measured by Serum Prostate Specific Antigen Concentration. Journal of Urology, 2006, 175, 1937-1942.	0.2	60
150	Adding genetic risk score to family history identifies twice as many high-risk men for prostate cancer: Results from the prostate cancer prevention trial. Prostate, 2016, 76, 1120-1129.	1.2	60
151	Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors. Oncogene, 2020, 39, 6935-6949.	2.6	60
152	Prostate Cancer Risk Associated Loci in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2009, 18, 2145-2149.	1.1	57
153	Increased gene copy number of ERG on chromosome 21 but not TMPRSS2–ERG fusion predicts outcome in prostatic adenocarcinomas. Modern Pathology, 2011, 24, 1511-1520.	2.9	57
154	A comprehensive evaluation of $\langle i \rangle$ CHEK2 $\langle i \rangle$ germline mutations in men with prostate cancer. Prostate, 2018, 78, 607-615.	1.2	57
155	VITAMIN D RECEPTOR POLYMORPHISMS AND LETHAL PROSTATE CANCER. Journal of Urology, 1998, 160, 1405-1409.	0.2	56
156	Polymorphisms in the CYP1A1 gene are associated with prostate cancer risk. International Journal of Cancer, 2003, 106, 375-378.	2.3	56
157	Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas. Clinical Cancer Research, 2015, 21, 5619-5629.	3.2	56
158	LOSS OF HETEROZYGOSITY AT 12P12–13 IN PRIMARY AND METASTATIC PROSTATE ADENOCARCINOMA. Journal of Urology, 2000, 164, 192-196.	0.2	55
159	Evidence for a prostate cancer linkage to chromosome 20 in 159 hereditary prostate cancer families. Human Genetics, 2001, 108, 430-435.	1.8	53
160	Design, Synthesis, and In Vitro Testing of \hat{l}_{\pm} -Methylacyl-CoA Racemase Inhibitors. Journal of Medicinal Chemistry, 2007, 50, 2700-2707.	2.9	52
161	Association of 17 prostate cancer susceptibility loci with prostate cancer risk in Chinese men. Prostate, 2010, 70, 425-432.	1.2	52
162	Cytokine profiling of prostatic fluid from cancerous prostate glands identifies cytokines associated with extent of tumor and inflammation. Prostate, 2008, 68, 872-882.	1.2	51

#	Article	IF	Citations
163	Endoglin (CD105) as a urinary and serum marker of prostate cancer. International Journal of Cancer, 2009, 124, 664-669.	2.3	51
164	Evaluation of PPP2R2A as a prostate cancer susceptibility gene: a comprehensive germline and somatic study. Cancer Genetics, 2011, 204, 375-381.	0.2	51
165	Large-scale association analysis in Asians identifies new susceptibility loci for prostate cancer. Nature Communications, 2015, 6, 8469.	5.8	51
166	A Novel Prostate Cancer Susceptibility Locus at 19q13. Cancer Research, 2009, 69, 2720-2723.	0.4	50
167	The G84E mutation of HOXB13 is associated with increased risk for prostate cancer: results from the REDUCE trial. Carcinogenesis, 2013, 34, 1260-1264.	1.3	50
168	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	1.4	50
169	No evidence for a role of BRCA1 or BRCA2 mutations in Ashkenazi Jewish families with hereditary prostate cancer., 1999, 39, 280-284.		49
170	Variation in <i>IL10</i> and Other Genes Involved in the Immune Response and in Oxidation and Prostate Cancer Recurrence. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 1774-1782.	1.1	49
171	Screening for familial and hereditary prostate cancer. International Journal of Cancer, 2016, 138, 2579-2591.	2.3	49
172	High mobility group protein I(Y): a candidate architectural protein for chromosomal rearrangements in prostate cancer cells. Cancer Research, 2002, 62, 647-51.	0.4	49
173	Interleukin-2 transfected prostate cancer cells generate a local antitumor effect in vivo. Prostate, 1994, 24, 244-251.	1.2	48
174	Linkage and association of CYP17 gene in hereditary and sporadic prostate cancer. International Journal of Cancer, 2001, 95, 354-359.	2.3	48
175	Germ-Line Mutation of NKX3.1 Cosegregates with Hereditary Prostate Cancer and Alters the Homeodomain Structure and Function. Cancer Research, 2006, 66, 69-77.	0.4	48
176	TMPRSS2–ERG gene fusion status in minute (minimal) prostatic adenocarcinoma. Modern Pathology, 2009, 22, 1415-1422.	2.9	48
177	A comprehensive association study for genes in inflammation pathway provides support for their roles in prostate cancer risk in the CAPS study. Prostate, 2006, 66, 1556-1564.	1.2	47
178	Cumulative effect of five genetic variants on prostate cancer risk in multiple study populations. Prostate, 2008, 68, 1257-1262.	1.2	47
179	The <i>HOXB13</i> G84E Mutation Is Associated with an Increased Risk for Prostate Cancer and Other Malignancies. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1366-1372.	1,1	47
180	Genetic variability in inflammation pathways and prostate cancer risk. Urologic Oncology: Seminars and Original Investigations, 2007, 25, 250-259.	0.8	46

#	Article	IF	CITATIONS
181	High-Throughput Screen Identifies Novel Inhibitors of Cancer Biomarker α-Methylacyl Coenzyme A Racemase (AMACR/P504S). Molecular Cancer Therapeutics, 2011, 10, 825-838.	1.9	46
182	Mannose Receptor–positive Macrophage Infiltration Correlates with Prostate Cancer Onset and Metastatic Castration-resistant Disease. European Urology Oncology, 2019, 2, 429-436.	2.6	46
183	Looking Beyond Morphology: Cancer Gene Expression Profiling Using DNA Microarrays. Cancer Investigation, 2003, 21, 937-949.	0.6	45
184	Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Human Genetics, 2015, 134, 439-450.	1.8	45
185	Prostate Cancer Predisposition Loci and Risk of Metastatic Disease and Prostate Cancer Recurrence. Clinical Cancer Research, 2011, 17, 1075-1081.	3.2	44
186	Assignment of the Human α-Catenin Gene (CTNNA1) to Chromosome 5q21-q22. Genomics, 1994, 19, 188-190.	1.3	43
187	Genome-wide screen for prostate cancer susceptibility genes in men with clinically significant disease. Prostate, 2005, 64, 356-361.	1.2	43
188	Fine mapping of a region of chromosome 11q13 reveals multiple independent loci associated with risk of prostate cancer. Human Molecular Genetics, 2011, 20, 2869-2878.	1.4	43
189	Sequence variants of alpha-methylacyl-CoA racemase are associated with prostate cancer risk. Cancer Research, 2002, 62, 6485-8.	0.4	43
190	Deletion mapping at 12p12-13 in metastatic prostate cancer., 1999, 25, 270-276.		42
191	Immunomodulatory ILâ€18 binding protein is produced by prostate cancer cells and its levels in urine and serum correlate with tumor status. International Journal of Cancer, 2011, 129, 424-432.	2.3	42
192	A Genome-Wide Assessment of Variability in Human Serum Metabolism. Human Mutation, 2013, 34, 515-524.	1.1	42
193	Infections and inflammation in prostate cancer. American Journal of Clinical and Experimental Urology, 2013, 1, 3-11.	0.4	42
194	Multiple genomic alterations on 21q22 predict various <i>TMPRSS2/ERG</i> fusion transcripts in human prostate cancers. Genes Chromosomes and Cancer, 2007, 46, 972-980.	1.5	41
195	Association between sequence variants at $17q12$ and $17q24.3$ and prostate cancer risk in European and African Americans. Prostate, 2008, 68, 691-697.	1.2	41
196	Nucleotide resolution analysis of <i><i><i><scp>TMPRSS2</scp>and <i><scp>ERG</scp></i><rearrangements 174-183.<="" 2013,="" 230,="" cancer.="" in="" journal="" of="" pathology,="" prostate="" td=""><td>2.1</td><td>41</td></rearrangements></i></i></i>	2.1	41
197	Rare Germline Pathogenic Mutations of DNA Repair Genes Are Most Strongly Associated with Grade Group 5 Prostate Cancer. European Urology Oncology, 2020, 3, 224-230.	2.6	41
198	Inflammation, Microbiota, and Prostate Cancer. European Urology Focus, 2016, 2, 374-382.	1.6	40

#	Article	IF	Citations
199	HOXB13 interaction with MEIS1 modifies proliferation and gene expression in prostate cancer. Prostate, 2019, 79, 414-424.	1.2	39
200	Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Research, 2005, 15, 1477-1486.	2.4	38
201	An evaluation of PCR primer sets used for detection of <i>Propionibacterium acnes</i> in prostate tissue samples. Prostate, 2008, 68, 1492-1495.	1.2	38
202	Inherited genetic markers discovered to date are able to identify a significant number of men at considerably elevated risk for prostate cancer. Prostate, 2011, 71, 421-430.	1.2	38
203	A genome-wide search for loci interacting with known prostate cancer risk-associated genetic variants. Carcinogenesis, 2012, 33, 598-603.	1.3	38
204	The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Scientific Reports, 2017, 7, 17978.	1.6	38
205	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	2.6	38
206	Genome-wide association of familial prostate cancer cases identifies evidence for a rare segregating haplotype at 8q24.21. Human Genetics, 2016, 135, 923-938.	1.8	37
207	Meta-analysis of association of rare mutations and common sequence variants in theMSR1 gene and prostate cancer risk. Prostate, 2006, 66, 728-737.	1.2	36
208	Chromosome 8q24 risk variants in hereditary and nonâ€hereditary prostate cancer patients. Prostate, 2008, 68, 489-497.	1.2	36
209	Association of reported prostate cancer risk alleles with PSA levels among men without a diagnosis of prostate cancer. Prostate, 2009, 69, 419-427.	1.2	36
210	Performance of Three Inherited Risk Measures for Predicting Prostate Cancer Incidence and Mortality: A Population-based Prospective Analysis. European Urology, 2021, 79, 419-426.	0.9	36
211	Methylation and mutational analysis of p27kip1 in prostate carcinoma. Prostate, 2001, 48, 248-253.	1.2	35
212	Genetic Variants and Family History Predict Prostate Cancer Similar to Prostate-Specific Antigen. Clinical Cancer Research, 2009, 15, 1105-1111.	3.2	35
213	Sequence variation within the $5\hat{a} \in \mathbb{R}^2$ regulatory regions of the vitamin D binding protein and receptor genes and prostate cancer risk. Prostate, 2005, 64, 272-282.	1.2	34
214	Appraising the relevance of DNA copy number loss and gain in prostate cancer using whole genome DNA sequence data. PLoS Genetics, 2017, 13, e1007001.	1.5	34
215	Genome-wide copy-number variation analysis identifies common genetic variants at $20p13$ associated with aggressiveness of prostate cancer. Carcinogenesis, 2011 , 32 , $1057-1062$.	1.3	33
216	Integration of Somatic Deletion Analysis of Prostate Cancers and Germline Linkage Analysis of Prostate Cancer Families Reveals Two Small Consensus Regions for Prostate Cancer Genes at 8p. Cancer Research, 2007, 67, 4098-4103.	0.4	32

#	Article	IF	CITATIONS
217	Genetic and epigenetic inactivation of <i>LPL</i> gene in human prostate cancer. International Journal of Cancer, 2009, 124, 734-738.	2.3	32
218	A systematic comparison of exercise training protocols on animal models of cardiovascular capacity. Life Sciences, 2019, 217, 128-140.	2.0	32
219	A Germline Variant at 8q24 Contributes to Familial Clustering of Prostate Cancer in Men of African Ancestry. European Urology, 2020, 78, 316-320.	0.9	32
220	Molecular genetics and chromosomal alterations in prostate cancer. Cancer, 1995, 75, 2004-2012.	2.0	31
221	Compelling evidence for a prostate cancer gene at 22q12.3 by the International Consortium for Prostate Cancer Genetics. Human Molecular Genetics, 2007, 16, 1271-1278.	1.4	31
222	A major locus for hereditary prostate cancer in Finland: localization by linkage disequilibrium of a haplotype in the HPCX region. Human Genetics, 2005, 117, 307-316.	1.8	30
223	Fine-mapping the putative chromosome 17q21–22 prostate cancer susceptibility gene to a 10ÂcM region based on linkage analysis. Human Genetics, 2007, 121, 49-55.	1.8	30
224	DNA methylation, molecular genetic, and linkage studies in prostate cancer. Prostate, 1996, 29, 36-44.	1.2	29
225	Comprehensive genetic evaluation of common E-cadherin sequence variants and prostate cancer risk: strong confirmation of functional promoter SNP. Human Genetics, 2005, 118, 339-347.	1.8	29
226	Germline Variants in Asporin Vary by Race, Modulate the Tumor Microenvironment, and Are Differentially Associated with Metastatic Prostate Cancer. Clinical Cancer Research, 2016, 22, 448-458.	3.2	29
227	Large-scale fine mapping of the HNF1B locus and prostate cancer risk. Human Molecular Genetics, 2011, 20, 3322-3329.	1.4	28
228	Two-stage Study of Familial Prostate Cancer by Whole-exome Sequencing and Custom Capture Identifies 10 Novel Genes Associated with the Risk of Prostate Cancer. European Urology, 2021, 79, 353-361.	0.9	28
229	Evaluation of Association of HNF1B Variants with Diverse Cancers: Collaborative Analysis of Data from 19 Genome-Wide Association Studies. PLoS ONE, 2010, 5, e10858.	1.1	28
230	Telomere length as a risk factor for hereditary prostate cancer. Prostate, 2014, 74, 359-364.	1.2	27
231	Familial aggregation of bothersome benign prostatic hyperplasia symptoms. Urology, 2003, 61, 781-785.	0.5	26
232	Refining the Prostate Cancer Genetic Association within the <i>JAZF1</i> Gene on Chromosome 7p15.2. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1349-1355.	1.1	26
233	DNA-Repair Gene Mutations in Metastatic Prostate Cancer. New England Journal of Medicine, 2016, 375, 1802-1805.	13.9	26
234	Genetic and epigenetic inactivation of <i>TNFRSF10C</i> in human prostate cancer. Prostate, 2009, 69, 327-335.	1.2	25

#	Article	IF	Citations
235	Functional annotation of risk loci identified through genomeâ€wide association studies for prostate cancer. Prostate, 2011, 71, 955-963.	1.2	25
236	Genome-Wide Association Scan for Variants Associated with Early-Onset Prostate Cancer. PLoS ONE, 2014, 9, e93436.	1.1	25
237	Variation in genes involved in the immune response and prostate cancer risk in the placebo arm of the Prostate Cancer Prevention Trial. Prostate, 2015, 75, 1403-1418.	1.2	25
238	Physical and Transcript Map of the Hereditary Prostate Cancer Region at Xq27. Genomics, 2002, 79, 41-50.	1.3	24
239	Evaluation of SRD5A2 sequence variants in susceptibility to hereditary and sporadic prostate cancer. Prostate, 2003, 56, 37-44.	1.2	24
240	Improved Biomarkers for Prostate Cancer: A Definite Need. Journal of the National Cancer Institute, 2004, 96, 813-815.	3.0	24
241	RNASEL Arg462Gln polymorphism and prostate cancer in PLCO. Prostate, 2007, 67, 849-854.	1.2	24
242	Association analysis of 9,560 prostate cancer cases from the International Consortium of Prostate Cancer Genetics confirms the role of reported prostate cancer associated SNPs for familial disease. Human Genetics, 2014, 133, 347-356.	1.8	24
243	Integrated clinical, whole-genome, and transcriptome analysis of multisampled lethal metastatic prostate cancer. Journal of Physical Education and Sports Management, 2016, 2, a000752.	0.5	24
244	Effect of pentosan, a novel cancer chemotherapeutic agent, on prostate cancer cell growth and motility. Prostate, 1992, 20, 233-241.	1.2	23
245	Identification of a prostate cancer susceptibility locus on chromosome $7q11\hat{a}\in 21$ in Jewish families. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1939-1944.	3.3	23
246	\hat{l}_{\pm} -Catenin overrides Src-dependent activation of \hat{l}^2 -catenin oncogenic signaling. Molecular Cancer Therapeutics, 2008, 7, 1386-1397.	1.9	23
247	Validation of a prostate cancer polygenic risk score. Prostate, 2020, 80, 1314-1321.	1.2	23
248	Mutational analysis of PINX1 in hereditary prostate cancer. Prostate, 2004, 60, 298-302.	1.2	22
249	Genomeâ€wide linkage analysis of 1,233 prostate cancer pedigrees from the International Consortium for prostate cancer Genetics using novel sumLINK and sumLOD analyses. Prostate, 2010, 70, 735-744.	1.2	22
250	Rare Variation in <i>TET2</i> Is Associated with Clinically Relevant Prostate Carcinoma in African Americans. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 1456-1463.	1.1	22
251	Resistance to androgen receptor signaling inhibition does not necessitate development of neuroendocrine prostate cancer. JCI Insight, 2021, 6, .	2.3	22
252	Germline sequence variants of the LZTS1 gene are associated with prostate cancer risk. Cancer Genetics and Cytogenetics, 2002, 137, 1-7.	1.0	21

#	Article	IF	CITATIONS
253	Expression mapping at 12p12-13 in advanced prostate carcinoma. International Journal of Cancer, 2004, 109, 668-672.	2.3	21
254	Validation of prostate cancer risk-related loci identified from genome-wide association studies using family-based association analysis: evidence from the International Consortium for Prostate Cancer Genetics (ICPCG). Human Genetics, 2012, 131, 1095-1103.	1.8	21
255	Prevalence of the <i><scp>HOXB13</scp></i> â€ <scp>G84E</scp> prostate cancer risk allele in men treated with radical prostatectomy. BJU International, 2014, 113, 830-835.	1.3	21
256	Association between variants in genes involved in the immune response and prostate cancer risk in men randomized to the finasteride arm in the Prostate Cancer Prevention Trial. Prostate, 2017, 77, 908-919.	1.2	21
257	Sequence variants in the human 25-hydroxyvitamin D3 1-?-hydroxylase (CYP27B1) gene are not associated with prostate cancer risk. Prostate, 2002, 53, 175-178.	1.2	20
258	GermlineATBF1 mutations and prostate cancer risk. Prostate, 2006, 66, 1082-1085.	1.2	20
259	Polymorphic variants in αâ€methylacylâ€CoA racemase and prostate cancer. Prostate, 2007, 67, 1487-1497.	1.2	20
260	Single-Nucleotide Polymorphism–Based Genetic Risk Score and Patient Age at Prostate Cancer Diagnosis. JAMA Network Open, 2019, 2, e1918145.	2.8	20
261	Androgen receptor splice variant, AR-V7, and resistance to enzalutamide and abiraterone in men with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2014, 32, 5001-5001.	0.8	20
262	Mutational analysis of ETV6 in prostate carcinoma. Prostate, 2002, 52, 305-310.	1.2	19
263	Mutational analysis of SPANX genes in families with X-Linked prostate cancer. Prostate, 2007, 67, 820-828.	1.2	19
264	Identification and characterization of novel SNPs in CHEK2 in Ashkenazi Jewish men with prostate cancer. Cancer Letters, 2008, 270, 173-180.	3.2	19
265	Comprehensive mutational analysis and mRNA isoform quantification of <i>TP63</i> in normal and neoplastic human prostate cells. Prostate, 2009, 69, 559-569.	1.2	19
266	A genetic variant near <i>GATA3</i> inplicated in inherited susceptibility and etiology of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Prostate, 2017, 77, 1213-1220.	1.2	19
267	Multiple antibodies to titin immunoreact with AHNAK and localize to the mitotic spindle machinery. Cytoskeleton, 2001, 50, 101-113.	4.4	18
268	Association of <i>CASP8 D302H</i> polymorphism with reduced risk of aggressive prostate carcinoma. Prostate, 2010, 70, 646-653.	1.2	18
269	A Peripheral Circulating TH1 Cytokine Profile Is Inversely Associated with Prostate Cancer Risk in CLUE II. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2561-2567.	1.1	18
270	Identification of a novel germline <i>SPOP</i> mutation in a family with hereditary prostate cancer. Prostate, 2014, 74, 983-990.	1,2	18

#	Article	IF	CITATIONS
271	Concept and benchmarks for assessing narrowâ€sense validity of genetic risk score values. Prostate, 2019, 79, 1099-1105.	1.2	18
272	Genomic and Clinicopathologic Characterization of <i>ATM </i> li>deficient Prostate Cancer. Clinical Cancer Research, 2020, 26, 4869-4881.	3.2	18
273	Differential effects of growth factor antagonists on neoplastic and normal prostatic cells. Prostate, 1990, 17, 327-336.	1.2	17
274	Molecular and cellular markers for metastatic prostate cancer. Cancer and Metastasis Reviews, 1993, 12, 3-10.	2.7	17
275	Interaction effect of PTEN and CDKN1B chromosomal regions on prostate cancer linkage. Human Genetics, 2003, -1, 1-1.	1.8	17
276	Genomeâ€wide expression analysis of recently processed formalinâ€fixed paraffin embedded human prostate tissues. Prostate, 2009, 69, 214-218.	1.2	17
277	Genome-wide two-locus epistasis scans in prostate cancer using two European populations. Human Genetics, 2012, 131, 1225-1234.	1.8	17
278	Health inequity drives disease biology to create disparities in prostate cancer outcomes. Journal of Clinical Investigation, 2022, 132, .	3.9	17
279	Two-locus genome-wide linkage scan for prostate cancer susceptibility genes with an interaction effect. Human Genetics, 2006, 118, 716-724.	1.8	16
280	G1/S cell cycle proteins as markers of aggressive prostate carcinoma. Urology, 2000, 55, 316-322.	0.5	15
281	Comparison of Two Methods for Estimating Absolute Risk of Prostate Cancer Based on Single Nucleotide Polymorphisms and Family History. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 1083-1088.	1.1	15
282	Identification of a novel NBN truncating mutation in a family with hereditary prostate cancer. Familial Cancer, 2012, 11, 595-600.	0.9	15
283	Association of prostate cancer risk with snps in regions containing androgen receptor binding sites captured by ChIPâ€Onâ€chip analyses. Prostate, 2012, 72, 376-385.	1.2	15
284	Germline mutations in <scp>DNA</scp> repair genes are associated with bladder cancer risk and unfavourable prognosis. BJU International, 2018, 122, 808-813.	1.3	15
285	Germline <i>BLM</i> mutations and metastatic prostate cancer. Prostate, 2020, 80, 235-237.	1.2	15
286	Xq27-28 deletions in prostate carcinoma. Genes Chromosomes and Cancer, 2003, 37, 381-388.	1.5	14
287	Chromosomes 4 and 8 implicated in a genome wide SNP linkage scan of 762 prostate cancer families collected by the ICPCG. Prostate, 2012, 72, 410-426.	1.2	14
288	AR splice variant 7 (AR-V7) and response to taxanes in men with metastatic castration-resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2015, 33, 138-138.	0.8	14

#	Article	IF	CITATIONS
289	Distinct Genomic Alterations in Prostate Tumors Derived from African American Men. Molecular Cancer Research, 2020, 18, 1815-1824.	1.5	14
290	A Nonclassic CCAAT Enhancer Element Binding Protein Binding Site Contributes to \hat{l}_{\pm} -Methylacyl-CoA Racemase Expression in Prostate Cancer. Molecular Cancer Research, 2005, 3, 110-118.	1.5	13
291	Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. American Journal of Pathology, 2019, 189, 2311-2322.	1.9	13
292	The HOXB13 variant X285K is associated with clinical significance and early age at diagnosis in African American prostate cancer patients. British Journal of Cancer, 2022, 126, 791-796.	2.9	13
293	Do Environmental Factors Modify the Genetic Risk of Prostate Cancer?. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 213-220.	1.1	12
294	Genetic variants in cell cycle control pathway confer susceptibility to aggressive prostate carcinoma. Prostate, 2016, 76, 479-490.	1.2	12
295	Germline mutations in <i>PPFIBP2</i> are associated with lethal prostate cancer. Prostate, 2018, 78, 1222-1228.	1.2	12
296	Molecular Characterization and Clinical Outcomes of Primary Gleason Pattern 5 Prostate Cancer After Radical Prostatectomy. JCO Precision Oncology, 2019, 3, 1-13.	1.5	12
297	Prostate Cancer Predisposition. Urologic Clinics of North America, 2021, 48, 283-296.	0.8	12
298	Inherited risk assessment and its clinical utility for predicting prostate cancer from diagnostic prostate biopsies. Prostate Cancer and Prostatic Diseases, 2022, 25, 422-430.	2.0	12
299	Sequence variants in the 3′→5′ deoxyribonuclease TREX2: identification in a genetic screen and effects on catalysis by the recombinant proteins. Advances in Enzyme Regulation, 2004, 44, 37-49.	2.9	11
300	Genome-wide Association Study Identifies Loci at ATF7IP and KLK2 Associated with Percentage of Circulating Free PSA. Neoplasia, 2013, 15, 95-IN30.	2.3	11
301	Infectious mononucleosis, other infections and prostate-specific antigen concentration as a marker of prostate involvement during infection. International Journal of Cancer, 2016, 138, 2221-2230.	2.3	11
302	Genetic factors influencing prostate cancer risk in Norwegian men. Prostate, 2018, 78, 186-192.	1.2	11
303	<i>Trichomonas vaginalis</i> infection and prostateâ€specific antigen concentration: Insights into prostate involvement and prostate disease risk. Prostate, 2019, 79, 1622-1628.	1.2	11
304	Current progress and questions in germline genetics of prostate cancer. Asian Journal of Urology, 2019, 6, 3-9.	0.5	11
305	Germline HOXB13 G84E mutation carriers and risk to twenty common types of cancer: results from the UK Biobank. British Journal of Cancer, 2020, 123, 1356-1359.	2.9	11
306	Association of prostate cancer polygenic risk score with number and laterality of tumor cores in active surveillance patients. Prostate, 2021, 81, 703-709.	1.2	11

#	Article	IF	CITATIONS
307	Transmission/disequilibrium tests of androgen receptor and glutathione S-transferase pi variants in prostate cancer families. International Journal of Cancer, 2002, 98, 938-942.	2.3	10
308	A Genome-Wide Survey over the ChIP-On-Chip Identified Androgen Receptor-Binding Genomic Regions Identifies a Novel Prostate Cancer Susceptibility Locus at 12q13.13. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2396-2403.	1.1	10
309	Germ-line sequence variants of PTEN do not have an important role in hereditary and non-hereditary prostate cancer susceptibility. Journal of Human Genetics, 2011, 56, 496-502.	1.1	10
310	Observed evidence for guidelineâ€recommended genes in predicting prostate cancer risk from a large populationâ€based cohort. Prostate, 2021, 81, 1002-1008.	1,2	10
311	Truncating Variants in p53AlP1 Disrupting DNA Damage–Induced Apoptosis Are Associated with Prostate Cancer Risk. Cancer Research, 2006, 66, 10302-10307.	0.4	9
312	gsSKAT: Rapid gene set analysis and multiple testing correction for rareâ€variant association studies using weighted linear kernels. Genetic Epidemiology, 2017, 41, 297-308.	0.6	9
313	Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunology, Immunotherapy, 2022, 71, 943-951.	2.0	9
314	Somatic molecular subtyping of prostate tumors from <i>HOXB13</i> G84E carriers. Oncotarget, 2017, 8, 22772-22782.	0.8	9
315	Insight into infectionâ€mediated prostate damage: Contrasting patterns of Câ€reactive protein and prostateâ€specific antigen levels during infection. Prostate, 2017, 77, 1325-1334.	1.2	8
316	Inherited risk assessment of prostate cancer: it takes three to do it right. Prostate Cancer and Prostatic Diseases, 2020, 23, 59-61.	2.0	8
317	Use of Aspirin and Statins in Relation to Inflammation in Benign Prostate Tissue in the Placebo Arm of the Prostate Cancer Prevention Trial. Cancer Prevention Research, 2020, 13, 853-862.	0.7	8
318	Genome-wide Association Study Identifies Genetic Determinants of Urine PCA3 Levels in Men. Neoplasia, 2013, 15, 448-IN26.	2.3	7
319	E1A Transformed Normal Human Prostate Epithelial Cells Contain a 16q Deletion. Cancer Genetics and Cytogenetics, 1998, 103, 155-163.	1.0	6
320	A multigenic approach to evaluating prostate cancer risk in a systematic replication study. Cancer Genetics and Cytogenetics, 2008, 183, 94-98.	1.0	6
321	Peripheral Zone Inflammation Is Not Strongly Associated With Lower Urinary Tract Symptom Incidence and Progression in the Placebo Arm of the Prostate Cancer Prevention Trial. Prostate, 2016, 76, 1399-1408.	1.2	6
322	Inherited susceptibility for aggressive prostate cancer. Asian Journal of Andrology, 2012, 14, 415-418.	0.8	6
323	Does diabetes mellitus modify the association between 17q12 risk variant and prostate cancer aggressiveness?. BJU International, 2009, 104, 1200-1203.	1.3	5
324	Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ€Control Sequencing Studies. Genetic Epidemiology, 2016, 40, 461-469.	0.6	5

#	Article	IF	Citations
325	Key genes involved in the immune response are generally not associated with intraprostatic inflammation in men without a prostate cancer diagnosis: Results from the prostate cancer prevention trial. Prostate, 2016, 76, 565-574.	1.2	5
326	Updated insights into genetic contribution to prostate cancer predisposition: focus on HOXB13. Canadian Journal of Urology, 2019, 26, 12-13.	0.0	5
327	Polymorphisms Influencing Prostate-Specific Antigen Concentration May Bias Genome-Wide Association Studies on Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 88-93.	1.1	4
328	Sustained influence of infections on prostateâ€specific antigen concentration: An analysis of changes over 10 years of followâ€up. Prostate, 2018, 78, 1024-1034.	1.2	4
329	Feasibility and performance of a novel probe panel to detect somatic DNA copy number alterations in clinical specimens for predicting prostate cancer progression. Prostate, 2020, 80, 1253-1262.	1.2	4
330	Specific Detection of Prostate Cancer Cells in Urine by RNA In Situ Hybridization. Journal of Urology, 2021, 206, 37-43.	0.2	4
331	Genetic Susceptibility for Low Testosterone in Men and Its Implications in Biology and Screening: Data from the UK Biobank. European Urology Open Science, 2021, 29, 36-46.	0.2	4
332	Incorporation of Polygenic Risk Score into Guidelines for Inherited Risk Assessment for Prostate Cancer. European Urology, 2021, 80, 139-141.	0.9	4
333	Association of germline rare pathogenic mutations in guidelineâ€recommended genes with prostate cancer progression: A metaâ€analysis. Prostate, 2022, 82, 107-119.	1.2	4
334	Germline copy number polymorphisms involving larger than 100 kb are uncommon in normal subjects. Prostate, 2007, 67, 227-233.	1.2	3
335	A novel method for detection of exfoliated prostate cancer cells in urine by RNA in situ hybridization. Prostate Cancer and Prostatic Diseases, 2021, 24, 220-232.	2.0	3
336	ATM loss in primary prostate cancer: Analysis of >1000 cases using a validated clinical-grade immunohistochemistry (IHC) assay Journal of Clinical Oncology, 2019, 37, 5069-5069.	0.8	3
337	KLK3 germline mutation I179T complements DNA repair genes for predicting prostate cancer progression. Prostate Cancer and Prostatic Diseases, 2022, , .	2.0	3
338	Identifying Phased Mutations and Complex Rearrangements in Human Prostate Cancer Cell Lines through Linked-Read Whole-Genome Sequencing. Molecular Cancer Research, 2022, 20, 1013-1020.	1.5	3
339	The somatic mutation landscape of germline <i>CHEK2-</i> li>altered prostate cancer Journal of Clinical Oncology, 2021, 39, 5084-5084.	0.8	2
340	Combined Longitudinal Clinical and Autopsy Phenomic Assessment in Lethal Metastatic Prostate Cancer: Recommendations for Advancing Precision Medicine. European Urology Open Science, 2021, 30, 47-62.	0.2	2
341	Evidence for a general cancer susceptibility locus at 3p24 in families with hereditary prostate cancer. Cancer Letters, 2005, 219, 177-182.	3.2	1
342	What Do Myeloma, Breast Cancer, and Prostate Cancer Have in Common?. European Urology, 2017, 71, 166-167.	0.9	1

#	Article	IF	Citations
343	Differences in inherited risk among relatives of hereditary prostate cancer patients using genetic risk score. Prostate, 2018, 78, 1063-1068.	1.2	1
344	A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities., 2011, 71, 1656.		1
345	From the editorial office. Prostate, 2001, 48, 127-127.	1.2	0
346	GENETIC BASIS FOR PROSTATE CANCER., 2011,, 39-52.		0
347	Association of the <i>HOXB13 G84E</i> mutation with increased risk for prostate cancer and other malignancies Journal of Clinical Oncology, 2014, 32, 1558-1558.	0.8	0
348	Effect of germline DNA repair gene mutations on outcomes in men with metastatic castration-resistant prostate cancer receiving first-line abiraterone and enzalutamide Journal of Clinical Oncology, 2018, 36, 221-221.	0.8	0
349	Donald S Coffey, a man who meant so much to so many. American Journal of Clinical and Experimental Urology, 2018, 6, 41-42.	0.4	0
350	Germline <i>BRCA2</i> , <i>ATM</i> and <i>CHEK2</i> alterations shape somatic mutation landscapes in prostate cancer Journal of Clinical Oncology, 2022, 40, 148-148.	0.8	0
351	The role of genetic testing in prostate cancer screening, diagnosis, and treatment. Current Opinion in Oncology, 2022, Publish Ahead of Print, .	1.1	0