Jude T Deeney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7654631/publications.pdf Version: 2024-02-01

LUDE T DEENEY

#	Article	IF	CITATIONS
1	Hunger Associations With Meal Timing and Adherence to Potential Meal Timing Recommendations for Weight Loss. Current Developments in Nutrition, 2022, 6, 420.	0.1	0
2	What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia?. Diabetes, 2021, 70, 2174-2182.	0.3	23
3	Acyl-CoA Synthetase Inhibition Protects Clonal Pancreatic Beta-cell from Effects of Chronic Excess Nutrients. Current Developments in Nutrition, 2020, 4, nzaa049_045.	0.1	0
4	The Redox Communication Network as a Regulator of Metabolism. Frontiers in Physiology, 2020, 11, 567796.	1.3	33
5	Metformin Enhances Autophagy and Normalizes Mitochondrial Function to Alleviate Aging-Associated Inflammation. Cell Metabolism, 2020, 32, 44-55.e6.	7.2	321
6	Effects of medium chain triglycerides supplementation on insulin sensitivity and beta cell function: A feasibility study. PLoS ONE, 2019, 14, e0226200.	1.1	16
7	BET proteins in abnormal metabolism, inflammation, and the breast cancer microenvironment. Journal of Leukocyte Biology, 2018, 104, 265-274.	1.5	29
8	Elamipretide Promotes Mitophagosome Formation and Prevents Its Reduction Induced by Nutrient Excess in INS1 β-cells. Journal of Molecular Biology, 2018, 430, 4823-4833.	2.0	14
9	Understanding the role of pancreatic βâ€cell CD36 in the development of Type 2 Diabetes. FASEB Journal, 2018, 32, .	0.2	0
10	Type 1 diabetes alters lipid handling and metabolism in human fibroblasts and peripheral blood mononuclear cells. PLoS ONE, 2017, 12, e0188474.	1.1	10
11	Inhibition of Monoacylglycerol Lipase Activity Decreases Glucose-Stimulated Insulin Secretion in INS-1 (832/13) Cells and Rat Islets. PLoS ONE, 2016, 11, e0149008.	1.1	17
12	Phosphoinositide signalling in typeÂ2 diabetes: a β-cell perspective. Biochemical Society Transactions, 2016, 44, 293-298.	1.6	6
13	Inborn Errors of Long-Chain Fatty Acid β-Oxidation Link Neural Stem Cell Self-Renewal to Autism. Cell Reports, 2016, 14, 991-999.	2.9	95
14	BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell. PLoS ONE, 2016, 11, e0151329.	1.1	65
15	Direct Stimulation of Islet Insulin Secretion by Glycolytic and Mitochondrial Metabolites in KCl-Depolarized Islets. PLoS ONE, 2016, 11, e0166111.	1.1	9
16	KCl -Permeabilized Pancreatic Islets: An Experimental Model to Explore the Messenger Role of ATP in the Mechanism of Insulin Secretion. PLoS ONE, 2015, 10, e0140096.	1.1	7
17	Chronic Exposure to Excess Nutrients Left-shifts the Concentration Dependence of Glucose-stimulated Insulin Secretion in Pancreatic Î ² -Cells. Journal of Biological Chemistry, 2015, 290, 16191-16201.	1.6	44
18	Brd2 Gene Disruption Causes "Metabolically Healthy―Obesity. Vitamins and Hormones, 2013, 91, 49-75.	0.7	38

JUDE T DEENEY

#	Article	IF	CITATIONS
19	Inhibition of Monoâ€Acylâ€Glycerol Lipase by JZLâ€184 Results in Glucolipotoxicity in Pancreatic βâ€Cells. FASEB Journal, 2013, 27, 1010.10.	0.2	0
20	Storeâ€operated Ca 2+ entry mechanism is involved in glucoseâ€induced Ca 2+ responses and insulin secretion, and is critical for preventing ER stress in primary pancreatic β ells FASEB Journal, 2013, 27, 953.2.	0.2	0
21	Effects of Oleate and Inflammatory Cytokines on Dermal Fibroblasts in Type 1 Diabetics. FASEB Journal, 2013, 27, 1010.9.	0.2	0
22	Iron stimulates insulin secretion in clonal pancreatic $\hat{l}^2 \hat{a} \in \varepsilon$ ells and dissociated rat islets. FASEB Journal, 2013, 27, 1010.13.	0.2	1
23	Reactive Oxygen Species Stimulate Insulin Secretion in Rat Pancreatic Islets: Studies Using Mono-Oleoyl-Glycerol. PLoS ONE, 2012, 7, e30200.	1.1	57
24	Chronic exposure of clonal pancreatic βâ€cells (INSâ€1 832/13) to acetoacetate inhibits glucoseâ€induced insulin secretion. FASEB Journal, 2011, 25, 914.1.	0.2	0
25	ANTIOXIDANTS DECREASE LIPOLYSIS AND LIPID SYNTHESIS IN HUMAN DIFFERENTIATED ADIPOCYTES. FASEB Journal, 2011, 25, 914.5.	0.2	0
26	Respiration in Adipocytes is Inhibited by Reactive Oxygen Species. Obesity, 2010, 18, 1493-1502.	1.5	72
27	The CB1 Antagonist Rimonabant Decreases Insulin Hypersecretion in Rat Pancreatic Islets. Obesity, 2009, 17, 1856-1860.	1.5	44
28	Dual role of proapoptotic BAD in insulin secretion and beta cell survival. Nature Medicine, 2008, 14, 144-153.	15.2	285
29	Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO Journal, 2008, 27, 433-446.	3.5	2,587
30	Reactive Oxygen Species as a Signal in Glucose-Stimulated Insulin Secretion. Diabetes, 2007, 56, 1783-1791.	0.3	469
31	Tissue-dependent loss of phosphofructokinase-M in mice with interrupted activity of the distal promoter: impairment in insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E794-E801.	1.8	20
32	Ca2+, NAD(P)H and membrane potential changes in pancreatic Î ² -cells by methyl succinate: comparison with glucose. Biochemical Journal, 2007, 403, 197-205.	1.7	40
33	³ Hâ€serotonin as a marker of oscillatory insulin secretion in clonal βâ€cells (INSâ€1). FEBS Letters, 2007, 581, 4080-4084.	1.3	17
34	The L-type Voltage-Gated Ca ²⁺ Channel Is the Ca ²⁺ Sensor Protein of Stimulusâ^Secretion Coupling in Pancreatic Beta Cells. Biochemistry, 2007, 46, 14461-14467.	1.2	40
35	Regulation of lipolytic activity by long-chain acyl-coenzyme A in islets and adipocytes. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E1085-E1092.	1.8	32
36	Suppression of Î ² Cell Energy Metabolism and Insulin Release by PGC-1α. Developmental Cell, 2003, 5, 73-83.	3.1	134

JUDE T DEENEY

#	Article	IF	CITATIONS
37	Glucagon-like peptide 1 and fatty acids amplify pulsatile insulin secretion from perifused rat islets. Biochemical Journal, 2003, 369, 173-178.	1.7	20
38	Potentiation of insulin secretion by phorbol esters is mediated by PKC-α and nPKC isoforms. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E880-E888.	1.8	31
39	Glucose-induced Metabolic Oscillations Parallel Those of Ca2+ and Insulin Release in Clonal Insulin-secreting Cells. Journal of Biological Chemistry, 2001, 276, 36946-36950.	1.6	29
40	The Role of Long-Chain Fatty Acyl-CoA Esters in β-Cell Signal Transduction. Journal of Nutrition, 2000, 130, 299S-304S.	1.3	147
41	Acute Stimulation with Long Chain Acyl-CoA Enhances Exocytosis in Insulin-secreting Cells (HIT T-15) Tj ETQq1 1	0.784314 1.6	rgBT/Over
42	Metabolic control ofÎ ² -cell function. Seminars in Cell and Developmental Biology, 2000, 11, 267-275.	2.3	128
43	Temporal sequence of metabolic and ionic events in glucose-stimulated clonal pancreatic β-cells (HIT). Biochemical Journal, 1996, 315, 1015-1019.	1.7	60
44	Regulation of pancreatic β-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP. Biochemical Journal, 1996, 318, 615-621.	1.7	82
45	Reversible Ca2+-dependent Translocation of Protein Kinase C and Glucose-induced Insulin Release. Journal of Biological Chemistry, 1996, 271, 18154-18160.	1.6	48
46	Activation of the ATP-sensitive K+ Channel by Long Chain Acyl-CoA. Journal of Biological Chemistry, 1996, 271, 10623-10626.	1.6	146
47	Neomycin: a specific drug to study the inositol-phospholipid signalling system?. FEBS Letters, 1986, 197, 285-288.	1.3	103