List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653490/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging investigator series: microplastic sources, fate, toxicity, detection, and interactions with micropollutants in aquatic ecosystems – a review of reviews. Environmental Sciences: Processes and Impacts, 2022, 24, 172-195.	3.5	22
2	Chemical characterization of dissolved organic matter as disinfection byproduct precursors by UV/fluorescence and ESI FT-ICR MS after smoldering combustion of leaf needles and woody trunks of pine (Pinus jeffreyi). Water Research, 2022, 209, 117962.	11.3	9
3	Inputs of disinfection by-products to the marine environment from various industrial activities: Comparison to natural production. Water Research, 2022, 217, 118383.	11.3	18
4	Preferential Halogenation of Algal Organic Matter by Iodine over Chlorine and Bromine: Formation of Disinfection Byproducts and Correlation with Toxicity of Disinfected Waters. Environmental Science & Technology, 2022, 56, 1244-1256.	10.0	27
5	Formation of regulated and unregulated disinfection byproducts during chlorination and chloramination: Roles of dissolved organic matter type, bromide, and iodide. Journal of Environmental Sciences, 2022, 117, 151-160.	6.1	17
6	Effect of activated sludge treatment on the formation of Nnitrosamines under different chloramination conditions. Journal of Environmental Sciences, 2022, 117, 242-252.	6.1	3
7	Removal mechanisms of geosmin and MIB by oxygen nanobubbles during water treatment. Chemical Engineering Journal, 2022, 443, 136535.	12.7	21
8	Removal of halides from drinking water: technological achievements in the past ten years and research needs. Environmental Science and Pollution Research, 2022, 29, 55514-55527.	5.3	5
9	Predicting COVID-19 Infected Individuals in a Defined Population from Wastewater RNA Data. ACS ES&T Water, 2022, 2, 2225-2232.	4.6	5
10	Tracing microplastic (MP)-derived dissolved organic matter in the infiltration of MP-contaminated sand system and its disinfection byproducts formation. Water Research, 2022, 221, 118806.	11.3	18
11	Removal of the precursors of regulated DBPs and TOX from surface waters and wastewater effluents using mixed anion exchange resins. Chemosphere, 2021, 263, 128094.	8.2	13
12	Characterization of Dissolved Organic Matter from Wildfire-induced Microcystis aeruginosa Blooms controlled by Copper Sulfate as Disinfection Byproduct Precursors Using APPI(-) and ESI(-) FT-ICR MS. Water Research, 2021, 189, 116640.	11.3	23
13	Increased Organohalogen Diversity after Disinfection of Water from a Prescribed Burned Watershed. ACS ES&T Water, 2021, 1, 1274-1282.	4.6	3
14	Microwave regeneration of granular activated carbon saturated with PFAS. Water Research, 2021, 198, 117121.	11.3	33
15	Recovery of Critical Metals from Aqueous Sources. ACS Sustainable Chemistry and Engineering, 2021, 9, 11616-11634.	6.7	43
16	Predictive modeling of haloacetonitriles under uniform formation conditions. Water Research, 2021, 201, 117322.	11.3	8
17	Effect of superfine pulverization of powdered activated carbon on adsorption of carbamazepine in natural source waters. Science of the Total Environment, 2021, 793, 148473.	8.0	12
18	Stability of Oxygen Nanobubbles under Freshwater Conditions. Water Research, 2021, 206, 117749.	11.3	22

#	Article	IF	CITATIONS
19	Removal of bromide from natural waters: Bromide-selective vs. conventional ion exchange resins. Chemosphere, 2020, 238, 124583.	8.2	58
20	A comprehensive review of mathematical models developed for the estimation of organic disinfection byproducts. Chemosphere, 2020, 246, 125797.	8.2	14
21	Effect of bromide on NDMA formation during chloramination of model precursor compounds and natural waters. Water Research, 2020, 170, 115323.	11.3	12
22	Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Research, 2020, 170, 115364.	11.3	215
23	Hurricane resulted in releasing more nitrogenous than carbonaceous disinfection byproduct precursors in coastal watersheds. Science of the Total Environment, 2020, 705, 135785.	8.0	15
24	Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Research, 2020, 187, 116385.	11.3	7
25	Estimation of haloacetonitriles formation in water: Uniform formation conditions versus formation potential tests. Science of the Total Environment, 2020, 744, 140987.	8.0	11
26	Total organic halogen (TOX) species formation at different locations in drinking water distribution systems. Environmental Science: Water Research and Technology, 2020, 6, 2542-2552.	2.4	8
27	Toxicity of chlorinated algal-impacted waters: Formation of disinfection byproducts vs. reduction of cyanotoxins. Water Research, 2020, 184, 116145.	11.3	33
28	Source characterization and removal of <i>N</i> -nitrosamine precursors during activated sludge treatment. Environmental Science: Water Research and Technology, 2020, 6, 2432-2443.	2.4	2
29	Linear solvation energy relationship development for adsorption of synthetic organic compounds by carbon nanomaterials: an overview of the last decade. Environmental Science: Water Research and Technology, 2020, 6, 2949-2957.	2.4	4
30	Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. Water Research, 2020, 186, 116315.	11.3	4
31	Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. Water Research, 2020, 181, 115891.	11.3	37
32	Competitive Adsorption of Polycyclic Aromatic Hydrocarbons to Carbon Nanotubes and the Impact on Bioavailability to Fathead Minnow (<i>Pimephales promelas</i>). Environmental Toxicology and Chemistry, 2020, 39, 1702-1711.	4.3	4
33	Microplastics release precursors of chlorinated and brominated disinfection byproducts in water. Chemosphere, 2020, 251, 126452.	8.2	55
34	Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors. Water Research, 2020, 184, 116111.	11.3	13
35	Activated carbon and organic matter characteristics impact the adsorption of DBP precursors when chlorine is added prior to GAC contactors. Water Research, 2020, 184, 116146.	11.3	24
36	Mesoporous activated carbon shows superior adsorption affinity for 11-nor-9-carboxy-Δ9-tetrahydrocannabinol in water. Npj Clean Water, 2020, 3, .	8.0	5

#	Article	IF	CITATIONS
37	Sorption behavior of real microplastics (MPs): Insights for organic micropollutants adsorption on a large set of well-characterized MPs. Science of the Total Environment, 2020, 720, 137634.	8.0	107
38	Adsorption kinetics of synthetic organic contaminants onto superfine powdered activated carbon. Chemosphere, 2020, 253, 126628.	8.2	27
39	The interplay between natural organic matter and bromide on bromine substitution. Science of the Total Environment, 2019, 646, 1172-1181.	8.0	49
40	Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and wastewaters at ng/L levels. Water Research, 2019, 163, 114874.	11.3	115
41	Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes $\hat{a} \in \hat{A}$ critical review. Water Research, 2019, 164, 114929.	11.3	95
42	Chloramination of iodide-containing waters: Formation of iodinated disinfection byproducts and toxicity correlation with total organic halides of treated waters. Science of the Total Environment, 2019, 697, 134142.	8.0	33
43	Formation of iodinated trihalomethanes and noniodinated disinfection byproducts during chloramination of algal organic matter extracted from Microcystis aeruginosa. Water Research, 2019, 162, 115-126.	11.3	30
44	Historical and Future Needs for Geospatial Iodide Occurrence in Surface and Groundwaters of the United States of America. Environmental Science and Technology Letters, 2019, 6, 379-388.	8.7	24
45	Adsorption kinetics and aggregation for three classes of carbonaceous adsorbents in the presence of natural organic matter. Chemosphere, 2019, 229, 515-524.	8.2	33
46	Release of Nitrosamines and Nitrosamine Precursors from Scrap Tires. Environmental Science and Technology Letters, 2019, 6, 251-256.	8.7	21
47	Selective removal of bromide and iodide from natural waters using a novel AgCl-SPAC composite at environmentally relevant conditions. Water Research, 2019, 156, 168-178.	11.3	34
48	Control wildfire-induced Microcystis aeruginosa blooms by copper sulfate: Trade-offs between reducing algal organic matter and promoting disinfection byproduct formation. Water Research, 2019, 158, 227-236.	11.3	52
49	The Genesis of a Critical Environmental Concern: Cannabinoids in Our Water Systems. Environmental Science & Technology, 2019, 53, 1746-1747.	10.0	7
50	Efficient PFAS Removal by Amine-Functionalized Sorbents: Critical Review of the Current Literature. Environmental Science and Technology Letters, 2019, 6, 688-695.	8.7	160
51	The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 2019, 220, 866-882.	8.2	287
52	Predictive models for adsorption of organic compounds by Graphene nanosheets: comparison with carbon nanotubes. Science of the Total Environment, 2019, 654, 28-34.	8.0	19
53	Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere, 2019, 216, 224-233.	8.2	7
54	Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water. International Journal of Wildland Fire, 2019, 28, 804.	2.4	4

#	Article	IF	CITATIONS
55	Optical in-situ sensors capture dissolved organic carbon (DOC) dynamics after prescribed fire in high-DOC forest watersheds. International Journal of Wildland Fire, 2019, 28, 761.	2.4	11
56	The role of chloramine species in NDMA formation. Water Research, 2018, 140, 100-109.	11.3	45
57	Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. Science of the Total Environment, 2018, 635, 1383-1391.	8.0	10
58	Rapid Removal of Poly- and Perfluorinated Alkyl Substances by Poly(ethylenimine)-Functionalized Cellulose Microcrystals at Environmentally Relevant Conditions. Environmental Science and Technology Letters, 2018, 5, 764-769.	8.7	99
59	Formation of regulated and unregulated disinfection byproducts during chlorination of algal organic matter extracted from freshwater and marine algae. Water Research, 2018, 142, 313-324.	11.3	101
60	Removal of N-nitrosodimethylamine precursors by cation exchange resin: The effects of pH and calcium. Chemosphere, 2018, 211, 1091-1097.	8.2	6
61	Removal of bromide from surface waters using silver impregnated activated carbon. Water Research, 2017, 113, 223-230.	11.3	36
62	Elucidating Adsorptive Fractions of Natural Organic Matter on Carbon Nanotubes. Environmental Science & Technology, 2017, 51, 7101-7110.	10.0	92
63	Removal of both N-nitrosodimethylamine and trihalomethanes precursors in a single treatment using ion exchange resins. Water Research, 2017, 124, 20-28.	11.3	29
64	Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools. Journal of Environmental Sciences, 2017, 58, 155-162.	6.1	28
65	Adsorption of organic contaminants by graphene nanosheets: A review. Water Research, 2017, 126, 385-398.	11.3	354
66	The control of disinfection byproducts and their precursors in biologically active filtration processes. Water Research, 2017, 124, 630-653.	11.3	108
67	Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry, 2017, 136, 293-309.	3.5	43
68	Bioavailability of Carbon Nanomaterial-Adsorbed Polycyclic Aromatic Hydrocarbons to <i>Pimphales promelas</i> : Influence of Adsorbate Molecular Size and Configuration. Environmental Science & Technology, 2017, 51, 9288-9296.	10.0	14
69	Dynamic Changes of Disinfection Byproduct Precursors following Exposures of <i>Microcystis aeruginosa</i> to Wildfire Ash Solutions. Environmental Science & Technology, 2017, 51, 8272-8282.	10.0	22
70	Removal of Selected C―and Nâ€ÐBP Precursors in Biologically Active Filters. Journal - American Water Works Association, 2017, 109, E73.	0.3	13
71	Relative Importance of Different Water Categories as Sources of <i>N</i> -Nitrosamine Precursors. Environmental Science & Technology, 2016, 50, 13239-13248.	10.0	65
72	Temporal variations of disinfection byproduct precursors in wildfire detritus. Water Research, 2016, 99, 66-73.	11.3	27

#	Article	IF	CITATIONS
73	Linear solvation energy relationships (LSER) for adsorption of organic compounds by carbon nanotubes. Water Research, 2016, 98, 28-38.	11.3	51
74	Superfine powdered activated carbon (S-PAC) coatings on microfiltration membranes: Effects of milling time on contaminant removal and flux. Water Research, 2016, 100, 429-438.	11.3	35
75	The control of N-nitrosodimethylamine, Halonitromethane, and Trihalomethane precursors by Nanofiltration. Water Research, 2016, 105, 274-281.	11.3	35
76	Granular Activated Carbon Treatment May Result in Higher Predicted Genotoxicity in the Presence of Bromide. Environmental Science & Technology, 2016, 50, 9583-9591.	10.0	83
77	Evaluation of Seasonal Performance of Conventional and Phosphateâ€Amended Biofilters. Journal - American Water Works Association, 2016, 108, E523.	0.3	14
78	Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Science of the Total Environment, 2016, 565, 811-817.	8.0	84
79	Effect of bead milling on chemical and physical characteristics of activated carbons pulverized to superfine sizes. Water Research, 2016, 89, 161-170.	11.3	52
80	Removal of N -nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Research, 2016, 88, 711-718.	11.3	48
81	The environmental impacts of iron and steel industry: a life cycle assessment study. Journal of Cleaner Production, 2016, 130, 195-201.	9.3	112
82	The Role of Pre-Oxidation in Controlling NDMA Formation: A Review. ACS Symposium Series, 2015, , 151-172.	0.5	3
83	Carbonaceous and Nitrogenous Disinfecion By-Product Formation Potentials of Amino Acids. ACS Symposium Series, 2015, , 215-234.	0.5	1
84	Optimization of Coagulation Pretreatment Conditions in a Ceramic Membrane System. Journal - American Water Works Association, 2015, 107, E693.	0.3	7
85	Occurrence and Formation of Disinfection By-Products in Indoor U.S. Swimming Pools. ACS Symposium Series, 2015, , 405-430.	0.5	6
86	<i>N</i> -Nitrosodimethylamine (NDMA) Precursors Leach from Nanofiltration Membranes. Environmental Science and Technology Letters, 2015, 2, 66-69.	8.7	15
87	Influence of carbon nanotubes on the bioavailability of fluoranthene. Environmental Toxicology and Chemistry, 2015, 34, 658-666.	4.3	31
88	Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Research, 2015, 69, 162-172.	11.3	49
89	Wildfire Altering Terrestrial Precursors of Disinfection Byproducts in Forest Detritus. Environmental Science & Technology, 2015, 49, 5921-5929.	10.0	90
90	Disinfection by-product formation during seawater desalination: A review. Water Research, 2015, 81, 343-355.	11.3	164

#	Article	IF	CITATIONS
91	Mechanisms and modeling of halogenated aliphatic contaminant adsorption by carbon nanotubes. Journal of Hazardous Materials, 2015, 295, 138-144.	12.4	42
92	Adsorption of halogenated aliphatic contaminants by graphene nanomaterials. Water Research, 2015, 79, 57-67.	11.3	87
93	Trihalomethane hydrolysis in drinking water at elevated temperatures. Water Research, 2015, 78, 18-27.	11.3	40
94	Leaching of DOC, DN, and inorganic constituents from scrap tires. Chemosphere, 2015, 139, 617-623.	8.2	70
95	Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere, 2015, 121, 84-91.	8.2	100
96	LCA as a decision support tool for evaluation of best available techniques (BATs) for cleaner production of iron casting. Journal of Cleaner Production, 2015, 105, 337-347.	9.3	80
97	Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research, 2015, 68, 34-55.	11.3	261
98	Use of theoretical waste inventories in planning and monitoring of hazardous waste management systems. Waste Management and Research, 2014, 32, 763-771.	3.9	3
99	The effect of pre-oxidation on NDMA formation and the influence of pH. Water Research, 2014, 66, 169-179.	11.3	69
100	Formation Mechanism of NDMA from Ranitidine, Trimethylamine, and Other Tertiary Amines during Chloramination: A Computational Study. Environmental Science & Technology, 2014, 48, 8653-8663.	10.0	72
101	Disinfection byproducts in swimming pool: Occurrences, implications and future needs. Water Research, 2014, 53, 68-109.	11.3	175
102	Not your granddad's disinfection byâ€product problems and solutions. Journal - American Water Works Association, 2014, 106, 54-73.	0.3	7
103	Comparing graphene, carbon nanotubes, and superfine powdered activated carbon as adsorptive coating materials for microfiltration membranes. Journal of Hazardous Materials, 2013, 261, 91-98.	12.4	56
104	Development of a 3D QSPR model for adsorption of aromatic compounds by carbon nanotubes: comparison of multiple linear regression, artificial neural network and support vector machine. RSC Advances, 2013, 3, 23924.	3.6	27
105	The roles of tertiary amine structure, background organic matter and chloramine species on NDMA formation. Water Research, 2013, 47, 945-953.	11.3	128
106	Applicability of the linear solvation energy relationships in the prediction for adsorption of aromatic compounds on activated carbons from aqueous solutions. Separation and Purification Technology, 2013, 117, 111-117.	7.9	14
107	Adsorption of aromatic organic contaminants by graphene nanosheets: Comparison with carbon nanotubes and activated carbon. Water Research, 2013, 47, 1648-1654.	11.3	283
108	Formation of haloacetic acids from dissolved organic matter fractions during chloramination. Water Research, 2013, 47, 1147-1155.	11.3	23

#	Article	IF	CITATIONS
109	The control of N-DBP and C-DBP precursors with MIEX®. Water Research, 2013, 47, 1344-1352.	11.3	66
110	Predictive Model Development for Adsorption of Aromatic Contaminants by Multi-Walled Carbon Nanotubes. Environmental Science & Technology, 2013, 47, 2295-2303.	10.0	88
111	Calculating the greenhouse gas emissions of water utilities. Journal - American Water Works Association, 2013, 105, E363.	0.3	7
112	MIEX® treatment of an effluentâ€impacted stream. Journal - American Water Works Association, 2013, 105, E195.	0.3	9
113	Source water and microfiltration plant manganese control study. Journal - American Water Works Association, 2013, 105, E480.	0.3	0
114	The effects of selected preoxidation strategies on I-THM formation and speciation. Water Research, 2012, 46, 5491-5498.	11.3	37
115	The correlation between structural characteristics of activated carbons and their adsorption of organic solutes from aqueous solutions. Adsorption, 2012, 18, 229-238.	3.0	6
116	The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation. Water Research, 2012, 46, 11-20.	11.3	96
117	The effects of pH, bromide and nitrite on halonitromethane and trihalomethane formation from amino acids and amino sugars. Chemosphere, 2012, 86, 323-328.	8.2	73
118	Impact of carbon nanotube morphology on phenanthrene adsorption. Environmental Toxicology and Chemistry, 2012, 31, 73-78.	4.3	47
119	Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environmental Toxicology and Chemistry, 2012, 31, 79-85.	4.3	51
120	I-THM Formation and Speciation: Preformed Monochloramine versus Prechlorination Followed by Ammonia Addition. Environmental Science & amp; Technology, 2011, 45, 10429-10437.	10.0	69
121	Hazardous waste management in Turkey: current legislative requirements and future challenges. Desalination and Water Treatment, 2011, 26, 152-159.	1.0	2
122	Formation of disinfection by-products in indoor swimming pool water: The contribution from filling water natural organic matter and swimmer body fluids. Water Research, 2011, 45, 926-932.	11.3	138
123	The effects of dissolved natural organic matter on the adsorption of synthetic organic chemicals by activated carbons and carbon nanotubes. Water Research, 2011, 45, 1378-1386.	11.3	126
124	Unexpected Role of Activated Carbon in Promoting Transformation of Secondary Amines to <i>N</i> -Nitrosamines. Environmental Science & Technology, 2010, 44, 4161-4168.	10.0	66
125	Comparative Analysis of Halonitromethane and Trihalomethane Formation and Speciation in Drinking Water: The Effects of Disinfectants, pH, Bromide, and Nitrite. Environmental Science & Technology, 2010, 44, 794-799.	10.0	112
126	Halonitromethane formation potentials in drinking waters. Water Research, 2010, 44, 105-114.	11.3	148

#	Article	IF	CITATIONS
127	Adsorption of synthetic organic chemicals by carbon nanotubes: Effects of background solution chemistry. Water Research, 2010, 44, 2067-2074.	11.3	207
128	Adsorption of Aromatic Compounds by Carbonaceous Adsorbents: A Comparative Study on Granular Activated Carbon, Activated Carbon Fiber, and Carbon Nanotubes. Environmental Science & Technology, 2010, 44, 6377-6383.	10.0	237
129	Halonitromethanes formation in wastewater treatment plant effluents. Chemosphere, 2010, 79, 174-179.	8.2	49
130	Isolation and fractionation of natural organic matter: evaluation of reverse osmosis performance and impact of fractionation parameters. Environmental Monitoring and Assessment, 2009, 153, 307-321.	2.7	31
131	The Impacts of Aggregation and Surface Chemistry of Carbon Nanotubes on the Adsorption of Synthetic Organic Compounds. Environmental Science & Technology, 2009, 43, 5719-5725.	10.0	146
132	The significance of physical factors on the adsorption of polyaromatic compounds by activated carbons. Carbon, 2008, 46, 1885-1891.	10.3	23
133	Impacts of land disturbance on aquatic ecosystem health: Quantifying the cascade of events. Integrated Environmental Assessment and Management, 2008, 4, 431-442.	2.9	15
134	Recent Advances in Disinfection By-Product Formation, Occurrence, Control, Health Effects, and Regulations. ACS Symposium Series, 2008, , 2-19.	0.5	29
135	HAA Formation and Speciation during Chloramination. ACS Symposium Series, 2008, , 124-140.	0.5	2
136	Natural Dissolved Organic Matter Removal and Subsequent Disinfection By-Product Formation: A Comparison of Ion Exchange and Activated Carbon. ACS Symposium Series, 2008, , 242-256.	0.5	1
137	Physicoâ€Chemical Processes. Water Environment Research, 2008, 80, 978-1035.	2.7	0
138	Effects of quenching methods on HAA determination in chloraminated waters. Journal - American Water Works Association, 2008, 100, 89-99.	0.3	13
139	Approaches To Mitigate the Impact of Dissolved Organic Matter on the Adsorption of Synthetic Organic Contaminants by Porous Carbonaceous Sorbents. Environmental Science & Technology, 2007, 41, 7888-7894.	10.0	29
140	HAA formation during chloramination—significance of monochloramine's direct reaction with DOM. Journal - American Water Works Association, 2007, 99, 57-69.	0.3	47
141	Influence of Drought and Municipal Sewage Effluents on the Baseflow Water Chemistry of an Upper Piedmont River. Environmental Monitoring and Assessment, 2007, 132, 171-187.	2.7	20
142	Exploring Molecular Sieve Capabilities of Activated Carbon Fibers to Reduce the Impact of NOM Preloading on Trichloroethylene Adsorption. Environmental Science & Technology, 2006, 40, 1321-1327.	10.0	24
143	The impact of filtrate turbidity on UV ₂₅₄ and SUVA ₂₅₄ determinations. Journal - American Water Works Association, 2005, 97, 125-136.	0.3	13
144	The effect of the physical and chemical characteristics of activated carbons on the adsorption energy and affinity coefficient of Dubinin equation. Journal of Colloid and Interface Science, 2005, 292, 312-321.	9.4	29

#	Article	IF	CITATIONS
145	Dissolved organic matter removal and disinfection byproduct formation control using ion exchange. Desalination, 2005, 176, 189-200.	8.2	54
146	Adsorption of dissolved natural organic matter by modified activated carbons. Water Research, 2005, 39, 2281-2290.	11.3	146
147	Adsorption of oxygen by heat-treated granular and fibrous activated carbons. Journal of Colloid and Interface Science, 2004, 274, 1-8.	9.4	37
148	Tailoring activated carbons for enhanced removal of natural organic matter from natural waters. Carbon, 2004, 42, 547-557.	10.3	204
149	Trichloroethylene Adsorption by Fibrous and Granular Activated Carbons:Â Aqueous Phase, Gas Phase, and Water Vapor Adsorption Studiesâ€. Environmental Science & Technology, 2004, 38, 5834-5841.	10.0	103
150	Effects of reverse osmosis isolation on reactivity of naturally occurring dissolved organic matter in physicochemical processes. Water Research, 2004, 38, 1026-1036.	11.3	35
151	Performance of a hybrid reverse osmosis-constructed wetland treatment system for brackish oil field produced water. Water Research, 2003, 37, 705-713.	11.3	135
152	Selecting Filter Membranes for measuring DOC and UV ₂₅₄ . Journal - American Water Works Association, 2003, 95, 86-100.	0.3	74
153	Preloading of GAC by natural organic matter: effect of surface chemistry on TCE uptake. Studies in Surface Science and Catalysis, 2002, , 553-560.	1.5	6
154	Survey of DOC and UV measurement practices with implications for SUVA determination. Journal - American Water Works Association, 2002, 94, 68-80.	0.3	104
155	Removal and Sequestration of Iodide Using Silver-Impregnated Activated Carbon. Environmental Science & Technology, 2002, 36, 784-789.	10.0	162
156	Trichloroethylene adsorption by activated carbon preloaded with humic substances: effects of solution chemistry. Water Research, 2002, 36, 1685-1698.	11.3	55
157	Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation. Water Research, 2002, 36, 3834-3848.	11.3	206
158	Isolation of dissolved organic matter (dom) from surface waters using reverse osmosis and its impact on the reactivity of dom to formation and speciation of disinfection by-products. Water Research, 2001, 35, 2225-2234.	11.3	73
159	Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 1. Priority Pollutants. Environmental Science & Technology, 1999, 33, 3217-3224.	10.0	226
160	Role of Granular Activated Carbon Surface Chemistry on the Adsorption of Organic Compounds. 2. Natural Organic Matter. Environmental Science & Technology, 1999, 33, 3225-3233.	10.0	123
161	Competitive Effects of Nondisplaceable Organic Compounds on Trichloroethylene Uptake by Activated Carbon. I. Thermodynamic Predictions and Model Sensitivity Analyses. Journal of Colloid and Interface Science, 1998, 205, 271-279.	9.4	46
162	Competitive Effects of Nondisplaceable Organic Compounds on Trichloroethylene Uptake by Activated Carbon. II. Model Verification and Applicability to Natural Organic Matter. Journal of Colloid and Interface Science, 1998, 205, 280-289.	9.4	38

#	Article	IF	CITATION
163	THE OXYGEN SENSITIVITY OF ORGANIC MACROMOLECULE SORPTION BY ACTIVATED CARBON: EFFECTS OF SOLUTION CHEMISTRY. Water Research, 1998, 32, 154-164.	11.3	23
164	TCE adsorption by GAC preloaded with humic substances. Journal - American Water Works Association, 1998, 90, 76-89.	0.3	58
165	Adsorption of Natural Organic Polyelectrolytes by Activated Carbon:Â A Size-Exclusion Chromatography Study. Environmental Science & Technology, 1996, 30, 1336-1343.	10.0	185
166	Adsorption of Organic Macromolecules by Granular Activated Carbon. 2. Influence of Dissolved Oxygen. Environmental Science & amp; Technology, 1996, 30, 2195-2201.	10.0	45
167	Competitive Interactions among Components of Humic Acids in Granular Activated Carbon Adsorption Systems:Â Effects of Solution Chemistry. Environmental Science & Technology, 1996, 30, 1344-1351.	10.0	107
168	Adsorption of Organic Macromolecules by Granular Activated Carbon. 1. Influence of Molecular Properties Under Anoxic Solution Conditions. Environmental Science & Technology, 1996, 30, 2187-2194.	10.0	110
169	Impacts of dissolved oxygen on the sorption of humic substances and the subsequent inhibition of o-cresol ptake by granular activated carbon. Water Research, 1994, 28, 1673-1678.	11.3	21