
Jörg H Kleinschmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7653384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amphipols From A to Z. Annual Review of Biophysics, 2011, 40, 379-408.	10.0	226
2	Folding Intermediates of a β-Barrel Membrane Protein. Kinetic Evidence for a Multi-Step Membrane Insertion Mechanismâ€,‡. Biochemistry, 1996, 35, 12993-13000.	2.5	163
3	Secondary and Tertiary Structure Formation of the β-Barrel Membrane Protein OmpA is Synchronized and Depends on Membrane Thickness. Journal of Molecular Biology, 2002, 324, 319-330.	4.2	159
4	Folding and Insertion of the Outer Membrane Protein OmpA Is Assisted by the Chaperone Skp and by Lipopolysaccharide. Journal of Biological Chemistry, 2003, 278, 9092-9099.	3.4	144
5	Outer Membrane Protein A of Escherichia coli Inserts and Folds into Lipid Bilayers by a Concerted Mechanism. Biochemistry, 1999, 38, 5006-5016.	2.5	139
6	Outer membrane protein A of <i>E. coli</i> folds into detergent micelles, but not in the presence of monomeric detergent. Protein Science, 1999, 8, 2065-2071.	7.6	130
7	Structure and Assembly of β-Barrel Membrane Proteins. Journal of Biological Chemistry, 2001, 276, 32399-32402.	3.4	122
8	Time-Resolved Distance Determination by Tryptophan Fluorescence Quenching:  Probing Intermediates in Membrane Protein Folding. Biochemistry, 1999, 38, 4996-5005.	2.5	106
9	The Trimeric Periplasmic Chaperone Skp of Escherichia coli Forms 1:1 Complexes with Outer Membrane Proteins via Hydrophobic and Electrostatic Interactions. Journal of Molecular Biology, 2007, 374, 91-105.	4.2	101
10	Amphipathic Polymers: Tools To Fold Integral Membrane Proteins to Their Active Form. Biochemistry, 2006, 45, 13954-13961.	2.5	95
11	Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. Chemistry and Physics of Lipids, 2006, 141, 30-47.	3.2	78
12	Correct Folding of the β-Barrel of the Human Membrane Protein VDAC Requires a Lipid Bilayer. Journal of Molecular Biology, 2007, 368, 66-78.	4.2	76
13	Interaction of Bee Venom Melittin with Zwitterionic and Negatively Charged Phospholipid Bilayers. Biophysical Journal, 1997, 72, 767-778.	0.5	75
14	Folding of β -barrel membrane proteins in lipid bilayers — Unassisted and assisted folding and insertion. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1927-1943.	2.6	73
15	Membrane protein folding on the example of outer membrane protein A of Escherichia coli. Cellular and Molecular Life Sciences, 2003, 60, 1547-1558.	5.4	72
16	Structural Transitions in Short-Chain Lipid Assemblies Studied by 31P-NMR Spectroscopy. Biophysical Journal, 2002, 83, 994-1003.	0.5	69
17	The Major Outer Membrane Protein of Fusobacterium nucleatum (FomA) Folds and Inserts into Lipid Bilayers via Parallel Folding Pathways. Journal of Molecular Biology, 2006, 355, 548-561.	4.2	67
18	Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. European Biophysics Journal, 2013, 42, 103-118.	2.2	63

JöRG H KLEINSCHMIDT

#	Article	IF	CITATIONS
19	The Periplasmic Chaperone Skp Facilitates Targeting, Insertion, and Folding of OmpA into Lipid Membranes with a Negative Membrane Surface Potential. Biochemistry, 2009, 48, 10235-10245.	2.5	58
20	The Lipid Bilayer-Inserted Membrane Protein BamA of <i>Escherichia coli</i> Facilitates Insertion and Folding of Outer Membrane Protein A from Its Complex with Skp. Biochemistry, 2013, 52, 3974-3986.	2.5	55
21	Curvature Elasticity and Refolding of OmpA in Large Unilamellar Vesicles. Biophysical Journal, 2006, 91, L75-L77.	0.5	52
22	Orientation of β-Barrel Proteins OmpA and FhuA in Lipid Membranes. Chain Length Dependence from Infrared Dichroismâ€. Biochemistry, 2005, 44, 3515-3523.	2.5	46
23	Folding and stability of integral membrane proteins in amphipols. Archives of Biochemistry and Biophysics, 2014, 564, 327-343.	3.0	46
24	Membrane Elastic Fluctuations and the Insertion and Tilt of Î ² -Barrel Proteins. Biophysical Journal, 2006, 91, 227-232.	0.5	44
25	Binding Regions of Outer Membrane Protein A in Complexes with the Periplasmic Chaperone Skp. A Site-Directed Fluorescence Study. Biochemistry, 2009, 48, 4926-4936.	2.5	40
26	Association of Neighboring β-Strands of Outer Membrane Protein A in Lipid Bilayers Revealed by Site-Directed Fluorescence Quenching. Journal of Molecular Biology, 2011, 407, 316-332.	4.2	33
27	Omp85 _{Tt} from <i>Thermus thermophilus</i> HB27: an Ancestral Type of the Omp85 Protein Family. Journal of Bacteriology, 2008, 190, 4568-4575.	2.2	29
28	Association of Spin-Labeled Lipids with β-Barrel Proteins from the Outer Membrane ofEscherichia coliâ€. Biochemistry, 2004, 43, 11630-11636.	2.5	28
29	Incorporation of Outer Membrane Protein OmpG in Lipid Membranes: Proteinâ^'lipid Interactions and β-Barrel Orientation. Biochemistry, 2008, 47, 6189-6198.	2.5	28
30	Proteinâ^'Lipid Interactions with <i>Fusobacterium nucleatum</i> Major Outer Membrane Protein FomA: Spin-Label EPR and Polarized Infrared Spectroscopy. Biochemistry, 2008, 47, 8414-8423.	2.5	27
31	Misfolding of a bacterial autotransporter. Protein Science, 2005, 14, 2814-2827.	7.6	26
32	Cytochromec-Induced Increase of Motionally Restricted Lipid in Reconstituted CytochromecOxidase Membranes, Revealed by Spin-Label ESR Spectroscopy. Biochemistry, 1998, 37, 11579-11585.	2.5	20
33	β-Barrel scaffolds for the grafting of extracellular loops from G-protein-coupled receptors. Biological Chemistry, 2012, 393, 1341-1355.	2.5	9
34	Membrane Proteins ? Introduction. Cellular and Molecular Life Sciences, 2003, 60, 1527-1528.	5.4	8
35	Nonlinear Electron Paramagnetic Resonance Studies of the Interaction of CytochromecOxidase with Spin-Labeled Lipids in Gel-Phase Membranesâ€. Biochemistry, 2000, 39, 2355-2361.	2.5	6
36	A Chimeric GPCR Model Mimicking the Ligand Binding Site of the Human Y1 Receptor Studied by NMR Spectroscopy. ChemBioChem, 2011, 12, 1690-1693.	2.6	5

JöRG H KLEINSCHMIDT

#	Article	IF	CITATIONS
37	Kinetics of Insertion and Folding of Outer Membrane Proteins by Gel Electrophoresis. Methods in Molecular Biology, 2019, 2003, 145-162.	0.9	4
38	Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy. Methods in Molecular Biology, 2019, 2003, 465-492.	0.9	4
39	The Thermodynamic Stability of Membrane Proteins in Micelles and Lipid Bilayers Investigated with the Ferrichrom Receptor FhuA. Journal of Membrane Biology, 2022, 255, 485-502.	2.1	4
40	Folding and Stability of Monomeric β-Barrel Membrane Proteins. , 2006, , 27-56.		3
41	Binding Sites of Outer Membrane Protein A (OmpA) in the Complex with the Periplasmic Chaperone Skp from E. Coli. A site-directed fluorescence study. Biophysical Journal, 2009, 96, 449a-450a.	0.5	2
42	Assembly of Integral Membrane Proteins from the Periplasm into the Outer Membrane. , 0, , 30-66.		2
43	Interactions of the Membrane Protein Chaperone Skp with BamD of the β-Barrel Assembly Machinery Complex from E. coli. Biophysical Journal, 2018, 114, 243a-244a.	0.5	1
44	Comparison of Insertion and Folding of Chaperone-bound Outer Membrane Protein A (OmpA) of E. coli into Phospholipid Bilayers of Various Composition. Biophysical Journal, 2009, 96, 449a.	0.5	0
45	Effects of the Periplasmic Domain of BamA, the Essential Transmembrane Protein of the Beta-Barrel Assembly Machinery (BAM), in Folding and Insertion of the Outer Membrane Protein A. Biophysical Journal, 2012, 102, 625a.	0.5	0
46	Binding Regions in the Skp Chaperone for Client Membrane Proteins. AÂSite-Directed Fluorescence Study. Biophysical Journal, 2012, 102, 60a.	0.5	0
47	Periplasmic Chaperones and their Function in the Folding of Outer Membrane Protein A into Lipid Membranes. Biophysical Journal, 2013, 104, 195a.	0.5	0
48	The Lipoprotein BamB Facilitates Folding and Insertion of Outer Membrane Protein A (OmpA) into Lipid Membranes Depending on Bilayer Thickness. Biophysical Journal, 2016, 110, 227a-228a.	0.5	0