Quentin J Pittman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7652638/publications.pdf Version: 2024-02-01

	25014	31818
12,514	57	101
citations	h-index	g-index
235	235	10293
docs citations	times ranked	citing authors
	citations 235	12,514 57 citations h-index 235 235

OHENTIN L DITTMAN

#	Article	IF	CITATIONS
1	Recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. Journal of Neuroinflammation, 2022, 19, 73.	3.1	7
2	Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation. Brain, Behavior, and Immunity, 2022, 102, 266-278.	2.0	19
3	Gender inequality in publishing during the COVID-19 pandemic. Brain, Behavior, and Immunity, 2021, 91, 1-3.	2.0	50
4	Embryonic Microglia Interact with Hypothalamic Radial Glia during Development and Upregulate the TAM Receptors MERTK and AXL following an Insult. Cell Reports, 2021, 34, 108587.	2.9	21
5	Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology, 2021, 46, 992-1003.	2.8	17
6	Increased Excitatory Synaptic Transmission Associated with Adult Seizure Vulnerability Induced by Early-Life Inflammation in Mice. Journal of Neuroscience, 2021, 41, 4367-4377.	1.7	10
7	Vasopressin and central control of the cardiovascular system: A 40â€year retrospective. Journal of Neuroendocrinology, 2021, 33, e13011.	1.2	7
8	Characterization of microglial transcriptomes in the brain and spinal cord of mice in early and late experimental autoimmune encephalomyelitis using a RiboTag strategy. Scientific Reports, 2021, 11, 14319.	1.6	7
9	Behavioural adaptations after antibiotic treatment in male mice are reversed by activation of the aryl hydrocarbon receptor. Brain, Behavior, and Immunity, 2021, 98, 317-329.	2.0	10
10	Genetic Variants of Fatty Acid Amide Hydrolase Modulate Acute Inflammatory Responses to Colitis in Adult Male Mice. Frontiers in Cellular Neuroscience, 2021, 15, 764706.	1.8	3
11	Embryonic microglia influence developing hypothalamic glial populations. Journal of Neuroinflammation, 2020, 17, 146.	3.1	26
12	Brain TNF drives post-inflammation depression-like behavior and persistent pain in experimental arthritis. Brain, Behavior, and Immunity, 2020, 89, 224-232.	2.0	17
13	Anandamide Signaling Augmentation Rescues Amygdala Synaptic Function and Comorbid Emotional Alterations in a Model of Epilepsy. Journal of Neuroscience, 2020, 40, 6068-6081.	1.7	19
14	A gut feeling about the ketogenic diet in epilepsy. Epilepsy Research, 2020, 166, 106409.	0.8	11
15	Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 650-655.	3.3	50
16	Early Life Inflammation Increases CA1 Pyramidal Neuron Excitability in a Sex and Age Dependent Manner through a Chloride Homeostasis Disruption. Journal of Neuroscience, 2019, 39, 7244-7259.	1.7	18
17	Unexpected Microglial "De-activation―Associated With Altered Synaptic Transmission in the Early Stages of an Animal Model of Multiple Sclerosis. Journal of Experimental Neuroscience, 2019, 13, 117906951982588.	2.3	3
18	Stress coâ€opts the gut to affect epileptogenesis. Commentary on "Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome― Epilepsia Open, 2019, 4, 230-231.	1.3	4

#	Article	IF	CITATIONS
19	Early life inflammation — it sticks to the brain. Current Opinion in Behavioral Sciences, 2019, 28, 136-141.	2.0	4
20	What's in a name? How about being listed in the "Psychiatry―category in Clarivate's Journal Citation Index!. Brain, Behavior, and Immunity, 2019, 78, 3-4.	2.0	3
21	How to make a better mouse for brain behavior and immunity. Brain, Behavior, and Immunity, 2019, 76, 1-2.	2.0	4
22	Reduced Microglial Activity and Enhanced Glutamate Transmission in the Basolateral Amygdala in Early CNS Autoimmunity. Journal of Neuroscience, 2018, 38, 9019-9033.	1.7	47
23	Altered Brain Excitability and Increased Anxiety in Mice With Experimental Colitis: Consideration of Hyperalgesia and Sex Differences. Frontiers in Behavioral Neuroscience, 2018, 12, 58.	1.0	45
24	Cholecystokinin Switches the Plasticity of GABA Synapses in the Dorsomedial Hypothalamus via Astrocytic ATP Release. Journal of Neuroscience, 2018, 38, 8515-8525.	1.7	33
25	Comorbid epilepsy in autism spectrum disorder: Implications of postnatal inflammation for brain excitability. Epilepsia, 2018, 59, 1316-1326.	2.6	20
26	Neurobehavioral comorbidities of epilepsy: Role of inflammation. Epilepsia, 2017, 58, 48-56.	2.6	77
27	Hypothalamic neurons out of control. Journal of Physiology, 2017, 595, 6375-6375.	1.3	0
28	HCN channels segregate stimulationâ€evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents. Journal of Physiology, 2017, 595, 247-263.	1.3	16
29	Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Development, 2016, 11, 20.	1.1	23
30	Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocrinology, 2016, 66, 151-158.	1.3	47
31	ISDN2014_0366: Influence of microglia during tuberal hypothalamic development. International Journal of Developmental Neuroscience, 2015, 47, 108-108.	0.7	0
32	Toward a better understanding of the central consequences of intestinal inflammation. Annals of the New York Academy of Sciences, 2015, 1351, 149-154.	1.8	20
33	Fever and sickness behavior: Friend or foe?. Brain, Behavior, and Immunity, 2015, 50, 322-333.	2.0	110
34	Microglia-Dependent Alteration of Glutamatergic Synaptic Transmission and Plasticity in the Hippocampus during Peripheral Inflammation. Journal of Neuroscience, 2015, 35, 4942-4952.	1.7	170
35	Maternal Immune Activation Produces Cerebellar Hyperplasia and Alterations in Motor and Social Behaviors in Male and Female Mice. Cerebellum, 2015, 14, 491-505.	1.4	60
36	Postsynaptic Depolarization Enhances GABA Drive to Dorsomedial Hypothalamic Neurons through Somatodendritic Cholecystokinin Release. Journal of Neuroscience, 2015, 35, 13160-13170.	1.7	14

#	Article	IF	CITATIONS
37	Intracortical Microstimulation (ICMS) Activates Motor Cortex Layer 5 Pyramidal Neurons Mainly Transsynaptically. Brain Stimulation, 2015, 8, 742-750.	0.7	36
38	Glutamatergic transmission is enhanced in the amygdala in experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 132.	1.1	0
39	Epilepsy and brain inflammation. Experimental Neurology, 2013, 244, 11-21.	2.0	466
40	Altered cognitive-emotional behavior in early experimental autoimmune encephalitis – Cytokine and hormonal correlates. Brain, Behavior, and Immunity, 2013, 33, 164-172.	2.0	107
41	P-Selectin-Mediated Monocyte–Cerebral Endothelium Adhesive Interactions Link Peripheral Organ Inflammation To Sickness Behaviors. Journal of Neuroscience, 2013, 33, 14878-14888.	1.7	68
42	Increased excitability and molecular changes in adult rats after a febrile seizure. Epilepsia, 2013, 54, e45-e48.	2.6	43
43	Prenatal transport stress, postnatal maternal behavior, and offspring sex differentially affect seizure susceptibility in young rats. Epilepsy and Behavior, 2013, 29, 19-27.	0.9	22
44	Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nature Neuroscience, 2013, 16, 605-612.	7.1	84
45	Serotonin 1A Receptors Alter Expression of Movement Representations. Journal of Neuroscience, 2013, 33, 4988-4999.	1.7	17
46	Cannabinoid 1 receptors are critical for the innate immune response to TLR4 stimulation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 305, R224-R231.	0.9	40
47	Brain CB1 receptor expression following lipopolysaccharide-induced inflammation. Neuroscience, 2012, 227, 211-222.	1.1	20
48	Sex effects on neurodevelopmental outcomes of innate immune activation during prenatal and neonatal life. Hormones and Behavior, 2012, 62, 228-236.	1.0	49
49	High frequency stimulation alters motor maps, impairs skilled reaching performance and is accompanied by an upregulation of specific GABA, glutamate and NMDA receptor subunits. Neuroscience, 2012, 215, 98-113.	1.1	19
50	Expression of Exocytosis Proteins in Rat Supraoptic Nucleus Neurones. Journal of Neuroendocrinology, 2012, 24, 629-641.	1.2	35
51	A prolonged experimental febrile seizure results in motor map reorganization in adulthood. Neurobiology of Disease, 2012, 45, 692-700.	2.1	23
52	Cytokines and brain excitability. Frontiers in Neuroendocrinology, 2012, 33, 116-125.	2.5	329
53	Plasticity of mouse enteric synapses mediated through endocannabinoid and purinergic signaling. Neurogastroenterology and Motility, 2012, 24, e113-24.	1.6	21
54	Endocannabinoids Gate State-Dependent Plasticity of Synaptic Inhibition in Feeding Circuits. Neuron, 2011, 71, 529-541.	3.8	58

#	Article	IF	CITATIONS
55	Larger cortical motor maps after seizures. European Journal of Neuroscience, 2011, 34, 615-621.	1.2	11
56	A Neuro-Endocrine-Immune Symphony. Journal of Neuroendocrinology, 2011, 23, 1296-1297.	1.2	48
57	Contributions of peripheral inflammation to seizure susceptibility: Cytokines and brain excitability. Epilepsy Research, 2010, 89, 34-42.	0.8	255
58	Adaptation of intestinal secretomotor function and nutrient absorption in response to diet-induced obesity. Neurogastroenterology and Motility, 2010, 22, 602-e171.	1.6	15
59	Neonatal Programming by Neuroimmune Challenge: Effects on Responses and Tolerance to Septic Doses of Lipopolysaccharide in Adult Male and Female Rats. Journal of Neuroendocrinology, 2010, 22, 272-281.	1.2	25
60	Gaseous neurotransmitters and their role in anapyrexia. Frontiers in Bioscience - Elite, 2010, E2, 948-960.	0.9	3
61	Opposing Actions of Endothelin-1 on Glutamatergic Transmission onto Vasopressin and Oxytocin Neurons in the Supraoptic Nucleus. Journal of Neuroscience, 2010, 30, 16855-16863.	1.7	21
62	Cannabinoid CB2 Receptors in Health and Disease. Current Medicinal Chemistry, 2010, 17, 1394-1410.	1.2	87
63	Early Life Activation of Toll-Like Receptor 4 Reprograms Neural Anti-Inflammatory Pathways. Journal of Neuroscience, 2010, 30, 7975-7983.	1.7	74
64	Differential adipokine response in genetically predisposed lean and obese rats during inflammation: a role in modulating experimental colitis?. American Journal of Physiology - Renal Physiology, 2009, 297, G869-G877.	1.6	17
65	Early Life Exposure to Lipopolysaccharide Suppresses Experimental Autoimmune Encephalomyelitis by Promoting Tolerogenic Dendritic Cells and Regulatory T Cells. Journal of Immunology, 2009, 183, 298-309.	0.4	58
66	Viral-like brain inflammation during development causes increased seizure susceptibility in adult rats. Neurobiology of Disease, 2009, 36, 343-351.	2.1	102
67	Urotensin l–CRF–Urocortins: A mermaid's tail. General and Comparative Endocrinology, 2009, 164, 7-14.	0.8	8
68	The role of interleukin- $1\hat{l}^2$ in febrile seizures. Brain and Development, 2009, 31, 388-393.	0.6	101
69	Metaplasticity of Hypothalamic Synapses following In Vivo Challenge. Neuron, 2009, 62, 839-849.	3.8	33
70	Postnatal programming of the innate immune response. Integrative and Comparative Biology, 2009, 49, 237-245.	0.9	36
71	Effects of acute hypoxia and hyperthermia on the permeability of the blood-brain barrier in adult rats. Journal of Applied Physiology, 2009, 107, 1348-1356.	1.2	55
72	Febrile Seizures: Current Views and Investigations. Canadian Journal of Neurological Sciences, 2009, 36, 679-686.	0.3	44

#	Article	IF	CITATIONS
73	Central and peripheral neuroimmune responses: hyporesponsiveness during pregnancy. Journal of Physiology, 2008, 586, 399-406.	1.3	30
74	Brain adaptations for a successful pregnancy. Journal of Physiology, 2008, 586, 367-367.	1.3	0
75	Neonatal inflammation produces selective behavioural deficits and alters <i>N</i> â€methylâ€ <scp>d</scp> â€aspartate receptor subunit mRNA in the adult rat brain. European Journal of Neuroscience, 2008, 27, 644-653.	1.2	118
76	Suppression of the Febrile Response in Late Gestation: Evidence, Mechanisms and Outcomes. Journal of Neuroendocrinology, 2008, 20, 508-514.	1.2	31
77	Microglial activation and TNFα production mediate altered CNS excitability following peripheral inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17151-17156.	3.3	348
78	Cannabinoid CB ₂ receptors in the enteric nervous system modulate gastrointestinal contractility in lipopolysaccharide-treated rats. American Journal of Physiology - Renal Physiology, 2008, 295, G78-G87.	1.6	122
79	Effects of Global Cerebral Ischemia in the Pregnant Rat. Stroke, 2008, 39, 975-982.	1.0	18
80	Postnatal Inflammation Increases Seizure Susceptibility in Adult Rats. Journal of Neuroscience, 2008, 28, 6904-6913.	1.7	257
81	Dendritic Vasopressin Release: Reducing the Flow Makes Blood Vessels Grow. Endocrinology, 2008, 149, 4276-4278.	1.4	1
82	Endogenous modulators of synaptic transmission: cannabinoid regulation in the supraoptic nucleus. Progress in Brain Research, 2008, 170, 129-136.	0.9	19
83	Hemorrhage induced inactivation of presynaptic group III mGluRs controls metaplasticity in circuits regulating fluid balance. FASEB Journal, 2008, 22, 1231.2.	0.2	0
84	Neonatal immune challenge does not affect body weight regulation in rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R581-R589.	0.9	42
85	A neutral CB ₁ receptor antagonist reduces weight gain in rat. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 293, R2185-R2193.	0.9	88
86	Neonatal immune challenge exacerbates experimental colitis in adult rats: potential role for TNF-α. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R308-R315.	0.9	28
87	Peripheral Inflammation Exacerbates Damage After Global Ischemia Independently of Temperature and Acute Brain Inflammation. Stroke, 2007, 38, 1570-1577.	1.0	55
88	Peptide YY containing enteroendocrine cells and peripheral tissue sensitivity to PYY and PYY(3-36) are maintained in diet-induced obese and diet-resistant rats. Peptides, 2007, 28, 1185-1190.	1.2	12
89	Arvanil, anandamide and N-arachidonoyl-dopamine (NADA) inhibit emesis through cannabinoid CB1 and vanilloid TRPV1 receptors in the ferret. European Journal of Neuroscience, 2007, 25, 2773-2782.	1.2	111
90	Early-Life Immune Challenge: Defining a Critical Window for Effects on Adult Responses to Immune Challenge. Neuropsychopharmacology, 2006, 31, 1910-1918.	2.8	98

#	Article	IF	CITATIONS
91	Long term alterations in neuroimmune responses of female rats after neonatal exposure to lipopolysaccharide. Brain, Behavior, and Immunity, 2006, 20, 325-330.	2.0	38
92	Attenuation of Fever At Near Term: Is Interleukin-6-STAT3 Signalling Altered?. Journal of Neuroendocrinology, 2006, 18, 57-63.	1.2	16
93	AM 251 produces sustained reductions in food intake and body weight that are resistant to tolerance and conditioned taste aversion. British Journal of Pharmacology, 2006, 147, 109-116.	2.7	58
94	Rat Neonatal Immune Challenge Alters Adult Responses to Cerebral Ischaemia. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 456-467.	2.4	43
95	Neonatal programming of the rat neuroimmune response: stimulus specific changes elicited by bacterial and viral mimetics. Journal of Physiology, 2006, 571, 695-701.	1.3	66
96	Endothelin–an emerging role in proinflammatory pathways in brain. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2006, 290, R162-R163.	0.9	10
97	Galanin Modulates Neuronal and Synaptic Properties in the Rat Supraoptic Nucleus in a Use and State Dependent Manner. Journal of Neurophysiology, 2006, 96, 154-164.	0.9	22
98	Central and Peripheral Signaling Mechanisms Involved in Endocannabinoid Regulation of Feeding: A Perspective on the Munchies. Science Signaling, 2005, 2005, pe15-pe15.	1.6	24
99	Febrile Convulsions Induced by the Combination of Lipopolysaccharide and Low-dose Kainic Acid Enhance Seizure Susceptibility, Not Epileptogenesis, in Rats. Epilepsia, 2005, 46, 1898-1905.	2.6	60
100	Causal Links between Brain Cytokines and Experimental Febrile Convulsions in the Rat. Epilepsia, 2005, 46, 1906-1913.	2.6	175
101	Disruption of the blood-brain barrier during TNBS colitis. Neurogastroenterology and Motility, 2005, 17, 433-446.	1.6	65
102	Early life immune challenge alters innate immune responses to lipopolysaccharide: implications for host defense as adults. FASEB Journal, 2005, 19, 1519-1521.	0.2	97
103	Identification and Functional Characterization of Brainstem Cannabinoid CB2 Receptors. Science, 2005, 310, 329-332.	6.0	1,357
104	Early life immune challenge—effects on behavioural indices of adult rat fear and anxiety. Behavioural Brain Research, 2005, 164, 231-238.	1.2	102
105	Neonatal immune challenge alters nociception in the adult rat. Pain, 2005, 119, 133-141.	2.0	70
106	Neurohypophysial peptides: gatekeepers in the amygdala. Trends in Endocrinology and Metabolism, 2005, 16, 343-344.	3.1	13
107	A Novel Antipyretic Action of 15-Deoxy-Â12,14-Prostaglandin J2 in the Rat Brain. Journal of Neuroscience, 2004, 24, 1312-1318.	1.7	70
108	Lipopolysaccharide-induced Febrile Convulsions in the Rat: Short-term Sequelae. Epilepsia, 2004, 45, 1317-1329.	2.6	89

#	Article	IF	CITATIONS
109	Effects of cannabinoid receptor-2 activation on accelerated gastrointestinal transit in lipopolysaccharide-treated rats. British Journal of Pharmacology, 2004, 142, 1247-1254.	2.7	122
110	Mechanisms of deep brain stimulation: an intracellular study in rat thalamus. Journal of Physiology, 2004, 559, 301-313.	1.3	91
111	Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. Journal of Physiology, 2004, 559, 611-624.	1.3	124
112	Long-Term Alterations in Neuroimmune Responses after Neonatal Exposure to Lipopolysaccharide. Journal of Neuroscience, 2004, 24, 4928-4934.	1.7	125
113	Immune Signalling to the Brain. Journal of Physiology, 2003, 550, 1-1.	1.3	1
114	AVP V1a-R expression in the rat hypothalamus around parturition: relevance to antipyresis at term. Experimental Neurology, 2003, 183, 338-345.	2.0	9
115	Talking back: dendritic neurotransmitter release. Trends in Neurosciences, 2003, 26, 255-261.	4.2	192
116	Backtalk in neurons. Trends in Endocrinology and Metabolism, 2003, 14, 2-3.	3.1	2
117	Nifedipine facilitates neurotransmitter release independently of calcium channels. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6139-6144.	3.3	43
118	Vasopressin Differentially Modulates Non-NMDA Receptors in Vasopressin and Oxytocin Neurons in the Supraoptic Nucleus. Journal of Neuroscience, 2003, 23, 4270-4277.	1.7	63
119	Peptidergic Activation of Locomotor Pattern Generators in the Neonatal Spinal Cord. Journal of Neuroscience, 2003, 23, 10154-10163.	1.7	35
120	Compromised neuroimmune status in rats with experimental colitis. Journal of Physiology, 2003, 548, 929-939.	1.3	9
121	Chapter 18 Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Progress in Brain Research, 2002, 139, 235-246.	0.9	45
122	The Autonomic Nervous System and Thermoregulation. , 2002, , 244-272.		0
123	GABAB receptors modulate short-term potentiation of spontaneous excitatory postsynaptic currents in the rat supraoptic nucleus in vitro. Neuropharmacology, 2001, 41, 554-564.	2.0	2
124	Dopamine D4 Receptor Activation Inhibits Presynaptically Glutamatergic Neurotransmission in the Rat Supraoptic Nucleus. Journal of Neurophysiology, 2001, 86, 1149-1155.	0.9	43
125	Fever and antipyresis. NeuroImmune Biology, 2001, 1, 297-305.	0.2	0
126	Electrophysiological Properties of CA1 Neurons Protected by Postischemic Hypothermia in Gerbils. Stroke, 2001, 32, 788-795.	1.0	22

#	Article	IF	CITATIONS
127	Vasopressin Preferentially Depresses Excitatory Over Inhibitory Synaptic Transmission in the Rat Supraoptic Nucleus In Vitro. Journal of Neuroendocrinology, 2001, 12, 361-367.	1.2	44
128	Neurohypophysial peptides as retrograde transmitters in the supraoptic nucleus of the rat. Experimental Physiology, 2000, 85, 139s-143s.	0.9	22
129	Short-Term Potentiation of Miniature Excitatory Synaptic Currents Causes Excitation of Supraoptic Neurons. Journal of Neurophysiology, 2000, 83, 2542-2553.	0.9	63
130	Vasopressin and Amastatin Induce V1-Receptor-Mediated Suppression of Excitatory Transmission in the Rat Parabrachial Nucleus. Journal of Neurophysiology, 1999, 82, 1689-1696.	0.9	16
131	Identification of barosensitive neurons in the mediobasal forebrain using juxtacellular labeling. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R1766-R1771.	0.9	3
132	Suppression of PGE2 fever at near term: reduced thermogenesis but not enhanced vasopressin antipyresis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R354-R361.	0.9	14
133	Arginine vasopressin, fever and temperature regulation. Progress in Brain Research, 1999, 119, 383-392.	0.9	59
134	The action is at the terminal. Journal of Physiology, 1999, 520, 629-629.	1.3	4
135	Dopamine depresses glutamatergic synaptic transmission in the rat parabrachial nucleus in vitro. Neuroscience, 1999, 90, 457-468.	1.1	24
136	Vasopressin-Induced Antipyresis: Sex- and Experience-Dependent Febrile Responsesa. Annals of the New York Academy of Sciences, 1998, 856, 53-61.	1.8	21
137	Lipopolysaccharide-induced fever is dissociated from apoptotic cell death in the rat brain. Brain Research, 1998, 805, 95-103.	1.1	15
138	Activation of Presynaptic GABA _B Receptors Inhibits Evoked IPSCs in Rat Magnocellular Neurons In Vitro. Journal of Neurophysiology, 1998, 79, 1508-1517.	0.9	48
139	Rapid Onset of Antisense Effects: Evidence for A Close Link Between Gene Expression and Neuronal Activity. Perspectives in Antisense Science, 1998, , 43-59.	0.2	1
140	Dendritically Released Peptides Act as Retrograde Modulators of Afferent Excitation in the Supraoptic Nucleus In Vitro. Neuron, 1997, 19, 903-912.	3.8	175
141	Cholecystokinin and neurotensin inversely modulate excitatory synaptic transmission in the parabrachial nucleus in vitro. Neuroscience, 1997, 77, 23-35.	1.1	36
142	Ibogaine and a Total Alkaloidal Extract of Voacanga africana Modulate Neuronal Excitability and Synaptic Transmission in the Rat Parabrachial Nucleus In Vitro. Brain Research Bulletin, 1997, 44, 603-610.	1.4	13
143	Circumventricular organs and fever. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1997, 273, R1690-R1695.	0.9	44
144	Temperature Treck Annals of the New York Academy of Sciences, 1997, 813, 230-232.	1.8	4

#	Article	IF	CITATIONS
145	Peptidergic Modulation of Synaptic Transmission in the Parabrachial NucleusIn Vitro: Importance of Degradative Enzymes in Regulating Synaptic Efficacy. Journal of Neuroscience, 1996, 16, 6046-6055.	1.7	40
146	Oxytocin Released within the Supraoptic Nucleus of the Rat Brain by Positive Feedback Action is Involved in Parturitionâ€Related Events. Journal of Neuroendocrinology, 1996, 8, 227-233.	1.2	127
147	Prostaglandin Fever in Rats Throughout the Estrous Cycle Late Pregnancy and Post Parturition. Journal of Neuroendocrinology, 1996, 8, 145-151.	1.2	22
148	Interleukin-1β Stimulates both Central and Peripheral Release of Vasopressin and Oxytocin in the Rat. European Journal of Neuroscience, 1995, 7, 592-598.	1.2	120
149	Involvement of the PVN and BST in 1K1C hypertension in the rat. Brain Research, 1995, 669, 41-47.	1.1	13
150	Vasopressie-induced sensitization: involvement of neurohypophyseal peptide receptors. European Journal of Pharmacology, 1995, 294, 29-39.	1.7	10
151	Changes in arterial blood pressure alter activity of electrophysiologically identified single units of the stria terminalis. Neuroscience, 1995, 64, 835-844.	1.1	15
152	Responses of electrophysiologically identified rat paraventricular neurons to cholecystokinin and other stimuli. Neuroscience, 1995, 65, 869-878.	1.1	8
153	Acute, sequence-specific effects of oxytocin and vasopressin antisense oligonucleotides on neuronal responses. Neuroscience, 1995, 69, 997-1003.	1.1	27
154	Microdialysis with High NaCl Causes Central Release of Amino Acids and Dopamine. Journal of Neurochemistry, 1995, 64, 1632-1644.	2.1	20
155	Nitric Oxide-Releasing Nsaids: a Novel Class of Gi-Sparing Anti-Inflammatory Drugs. , 1995, 46, 121-129.		19
156	Synergy between tumor necrosis factor α and interleukin-1 in the induction of sickness behavior in mice. Psychoneuroendocrinology, 1994, 19, 197-207.	1.3	180
157	Lack of fever suppression or central AVP release in 1K1C hypertensive rats. Brain Research, 1994, 658, 15-20.	1.1	0
158	PRACTICAL ELECTROPHYSIOLOGICAL METHODS. 2nd Edition. 1993. Edited by Helmut Kettenmann and Rosemarie Grantyn. Published by Wiley-Liss, Inc. 449 pages. \$84 Cdn Canadian Journal of Neurological Sciences, 1994, 21, 290-290.	0.3	0
159	Arginine Vasopressin-Induced Sensitization in Brain: Facilitated Inositol Phosphate Production Without Changes in Receptor Number. Journal of Neuroendocrinology, 1993, 5, 23-31.	1.2	22
160	Oxytocin Pretreatment Enhances Arginine Vasopressin-Induced Motor Disturbances and Arginine Vasopressin-Induced Phosphoinositol Hydrolysis in Rat Septum: A Cross-Sensitization Phenomenon. Journal of Neuroendocrinology, 1993, 5, 33-39.	1.2	20
161	Interleukin-1Î ² has excitatory effects on neurons of the bed nucleus of the stria terminalis. Brain Research, 1993, 625, 342-346.	1.1	24
162	Blockade by funnel web toxin of a calcium current in the intermediate pituitary of the rat. Neuroscience Letters, 1993, 157, 171-174.	1.0	13

#	Article	IF	CITATIONS
163	Role of Neurohypophysial Hormones in Temperature Regulation. Annals of the New York Academy of Sciences, 1993, 689, 375-381.	1.8	17
164	Central arginine vasopressin and endogenous antipyresis. Canadian Journal of Physiology and Pharmacology, 1992, 70, 786-790.	0.7	56
165	Push-pull Perfusion and Microdialysis Studies of Central Oxytocin and Vasopressin Release in Freely Moving Rats during Pregnancy, Parturition, and Lactation. Annals of the New York Academy of Sciences, 1992, 652, 326-339.	1.8	66
166	Vasopressin perfusion within the medial amygdaloid nucleus attenuates prostaglandin fever in the urethane-anaesthetized rat. Brain Research, 1992, 587, 319-326.	1.1	11
167	Vasopressin-induced motor effects: Localization of a sensitive site in the amygdala. Brain Research, 1992, 596, 58-64.	1.1	29
168	Ca2+ - and voltage-dependent inactivation of Ca2+ currents in rat intermediate pituitary. Brain Research, 1991, 564, 12-18.	1.1	7
169	Septal and Hippocampal Release of Vasopressin and Oxytocin during Late Pregnancy and Parturition in the Rat. Neuroendocrinology, 1991, 54, 378-383.	1.2	115
170	Neurotransmitter-Mediated Changes in the Electrophysiological Properties of Pituicytes. Journal of Neuroendocrinology, 1991, 3, 433-439.	1.2	11
171	Depletion of brain α-MSH alters prostaglandin and interleukin fever in rats. Brain Research, 1990, 526, 351-354.	1.1	22
172	Pressor responses in rats following intravenous dynorphin A(1–13) administration are blocked by AVP-V1 receptor antagonism. Regulatory Peptides, 1990, 31, 1-10.	1.9	5
173	Spinal Arginine Vasopressin Elevates Renal Nerve Activity in the Rat. Journal of Neuroendocrinology, 1989, 1, 339-344.	1.2	14
174	A dopaminergic inhibitory postsynaptic potential mediated by an increased potassium conductance. Neuroscience, 1989, 31, 673-681.	1.1	55
175	Identification of a GABA-activated chloride-mediated synaptic potential in rat pars intermedia. Brain Research, 1989, 483, 130-134.	1.1	16
176	Presynaptic inhibition by neuropeptide Y and baclofen in hippocampus: insensitivity to pertussis toxin treatment. Brain Research, 1989, 498, 99-104.	1.1	55
177	Intrathecal dynorphin A administration causes pressor responses in rats associated with an increased resistance to spinal cord blood flow. Brain Research, 1989, 490, 174-177.	1.1	16
178	Single-unit activity in the bed nucleus of the stria terminalis during fever. Brain Research, 1989, 486, 49-55.	1.1	26
179	Mechanisms underlying the cardiovascular responses to intrathecal vasopressin administration in rats. Canadian Journal of Physiology and Pharmacology, 1989, 67, 269-275.	0.7	22
180	Brain Vasopressin and Cardiovascular Regulation in Normotensive and Hypertensive Animals. Hans Selye Symposia on Neuroendocrinology and Stress, 1989, , 134-145.	0.4	2

#	Article	IF	CITATIONS
181	Subcellular Localization and Characterization of Vasopressin Binding Sites in the Ventral Septal Area, Lateral Septum, and Hippocampus of the Rat Brain. Journal of Neurochemistry, 1988, 50, 889-898.	2.1	67
182	Plasma catecholamines in conscious rabbits after central administration of vasopressin. Brain Research, 1988, 457, 192-195.	1.1	12
183	Prostaglandin fever in rats is altered by kainic acid lesions of the ventral septal area. Brain Research, 1988, 455, 196-200.	1.1	10
184	Somatostatin(14) and -(28) but not somatostatin(1–12) hyperpolarize CA1 pyramidal neurons in vitro. Brain Research, 1988, 448, 40-45.	1.1	31
185	Depletion of central catecholamines reduces pressor responses to arginine vasopressin. Brain Research, 1988, 438, 295-298.	1.1	5
186	Pharmacological evidence that somatostatin activates the m-current in hippocampal pyramidal neurons. Neuroscience Letters, 1988, 91, 172-176.	1.0	27
187	The role of vasopressin as an antipyretic in the ventral septal area and its possible involvement in convulsive disorders. Brain Research Bulletin, 1988, 20, 887-892.	1.4	33
188	Electrophysiology of Ethanol on Central Neurons. Annals of the New York Academy of Sciences, 1987, 492, 350-366.	1.8	51
189	Altered sensitivity to arginine vasopressin (AVP) in area CA1 of the hippocampal slice following pretreatment of rats with AVP. Brain Research, 1987, 422, 11-16.	1.1	15
190	Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: an intracellular study. Brain Research, 1987, 414, 22-34.	1.1	136
191	Novel synaptic responses mediated by dopamine and Î ³ -aminobutyric acid in neuroendocrine cells of the intermediate pituitary. Neuroscience Letters, 1986, 64, 35-40.	1.0	21
192	The ventral septal area: Electrophysiological evidence for putative arginine vasopressin projections onto thermoresponsive neurons. Neuroscience, 1986, 19, 795-802.	1.1	28
193	Alcohol dependence and withdrawal in the rat. Journal of Pharmacological Methods, 1986, 15, 225-234.	0.7	14
194	The effects of intrathecal administration of arginine-vasopressin and substance P on blood pressure and adrenal secretion of epinephrine in rats. Journal of the Autonomic Nervous System, 1986, 16, 91-99.	1.9	19
195	Oxytocin and [1-deamino, 8-d-arginine]-vasopressin (dDAVP): intrathecal effects on blood pressure, heart rate and urine output. Brain Research, 1986, 374, 371-374.	1.1	25
196	Prevention of arginine-vasopressin-induced motor disturbances by a potent vasopressor antagonist. Brain Research, 1986, 362, 40-46.	1.1	30
197	Vasopressin antagonist in nucleus tractus solitarius/vagal area reduces pressor and tachycardia responses to paraventricular nucleus stimulation in rats. Neuroscience Letters, 1985, 56, 155-160.	1.0	58
198	The role of arginine vasopressin in alcohol dependence and withdrawal. Peptides, 1985, 6, 1043-1049.	1.2	4

#	Article	IF	CITATIONS
199	The action of centrally administered arginine vasopressin on blood pressure in the conscious rabbit. Brain Research, 1985, 348, 137-145.	1.1	32
200	Interaction between descending paraventricular neurons and vagal motor neurons. Brain Research, 1985, 332, 158-160.	1.1	33
201	The lack of â€~sensitization' to the pressor effects of centrally injected vasopressin in rats. Brain Research, 1985, 334, 157-159.	1.1	1
202	Vasopressin influences renal function via a spinal action. Brain Research, 1985, 336, 346-349.	1.1	21
203	Neuropeptide Y reduces orthodromically evoked population spike in rat hippocampal CA1 by a possibly presynaptic mechanism. Brain Research, 1985, 346, 404-408.	1.1	90
204	Brattleboro rats display increased sensitivity to arginine vasopressin-induced motor disturbances. Brain Research, 1985, 342, 316-322.	1.1	21
205	Vasopressin-induced motor disturbances: Localization of a sensitive forebrain site in the rat. Brain Research, 1985, 361, 242-246.	1.1	23
206	Electrophysiological analysis of potential arginine vasopressin projections to the ventral septal area of the rat. Brain Research, 1985, 342, 162-167.	1.1	27
207	Response of rat paraventricular neurones with central projections to suckling, haemorrhage or osmotic stimuli. Brain Research, 1985, 341, 176-183.	1.1	31
208	Cardiovascular responses to intrathecal administration of arginine vasopressin in rats. Regulatory Peptides, 1985, 10, 293-298.	1.9	27
209	Release of Arginine Vasopressin from the Brain: Correlation with Physiological Events. , 1985, , 233-248.		3
210	Electrophysiological identification of neurons in the parabrachial nucleus projecting directly to the hypothalamus in the rat. Brain Research, 1984, 322, 388-392.	1.1	59
211	Release of immunoassayable neurohypophyseal peptides from rat spinal cord, in vivo. Brain Research, 1984, 300, 321-326.	1.1	60
212	Increases in antidromic latency of neurohypophyseal neurons during sustained activation. Neuroscience Letters, 1983, 37, 239-243.	1.0	11
213	Increased motor disturbances in response to arginine vasopressin following hemorrhage or hypertonic saline: Evidence for central AVP release in rats. Brain Research, 1983, 273, 59-65.	1.1	46
214	CENTRAL EFFECTS OF ARGININE VASOPRESSIN ON BLOOD PRESSURE IN RATS. Endocrinology, 1982, 110, 1058-1060.	1.4	179
215	Arginine vasopressin deficient Brattleboro rats fail to develop tolerance to the hypothermic effects of ethanol. Regulatory Peptides, 1982, 4, 33-41.	1.9	25
216	Lateral septum-medial hypothalamic connections: An electrophysiological study in the rat. Neuroscience, 1982, 7, 2783-2792.	1.1	21

#	Article	IF	CITATIONS
217	Central neurohypophyseal peptide pathways: Interactions with endocrine and other autonomic functions. Peptides, 1982, 3, 515-520.	1.2	42
218	DEFICITS IN TOLERANCE TO ETHANOL IN BRATTLEBORO RATS. Annals of the New York Academy of Sciences, 1982, 394, 764-766.	1.8	7
219	BLOOD ALCOHOL LEVELS IN RATS: NONâ€UNIFORM YIELDS FROM INTRAPERITONEAL DOSES BASED ON BODY WEIGHT. British Journal of Pharmacology, 1982, 75, 251-254.	2.7	55
220	CENTRAL NEUROMODULATORY ROLE OF VASOPRESSIN IN ANTIPYRESIS AND IN EEBRILE CONVULSIONS . Biomedical Research, 1982, 3, 1-5.	0.3	21
221	Connections of the hypothalamic paraventricular necleus with the neurohypophysis, median eminence, amygdala, lateral septum and midbrain periaqueductal gray: An electrophysiological study in the rat. Brain Research, 1981, 215, 15-28.	1.1	152
222	Somatostatin hyperpolarizes hippocampal pyramidal cells in vitro. Brain Research, 1981, 221, 402-408.	1.1	208
223	Sensitivity of identified medial hypothalamic neurons to GABA, glycine and related amino acids; influence of bicuculline, picrotoxin and strychnine on synaptic inhibition. Brain Research, 1981, 209, 145-158.	1.1	46
224	Spontaneous activity in perfused hypothalamic slices: Dependence on calcium content of perfusate. Experimental Brain Research, 1981, 42, 49-52.	0.7	38
225	PEPTIDE MODULATION OF NEURONAL ELECTRICAL RESPONSES. , 1981, , 231-241.		1
226	Morphine and opioid peptides reduce paraventricular neuronal activity: studies on the rat hypothalamic slice preparation Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 5527-5531.	3.3	79
227	Bombesin-induced poikilothermy in rats. Brain Research, 1980, 188, 525-530.	1.1	70
228	Bombesin acts in preoptic area to produce hypothermia in rats. Life Sciences, 1980, 26, 725-730.	2.0	64
229	Hypothalamic enkephalin neurones may regulate the neurohypophysis. Nature, 1979, 277, 653-655.	13.7	274
230	Influence of midbrain stimulation on the excitability of neurons in the medial hypothalamus of the rat. Brain Research, 1979, 174, 39-53.	1.1	41
231	Thyrotropin-releasing hormone selectively depresses glutamate excitation of cerebral cortical neurons. Science, 1979, 205, 1275-1277.	6.0	97
232	Electrophysiological indications that individual hypothalamic neurons innervate both median eminence and neurohypophysis. Brain Research, 1978, 157, 364-368.	1.1	30
233	Electrophysiological indications of a â€~vasopressinergic' innervation of the median eminence. Brain Research, 1978, 155, 153-158.	1.1	27
234	Absence of fever following intrahypothalamic injections of prostaglandins in sheep. Neuropharmacology, 1977, 16, 743-749.	2.0	9

#	Article	IF	CITATIONS
235	Effect of prostaglandin, pyrogen and noradrenaline, injected into the hypothalamus, on thermoregulation in newborn lambs. Brain Research, 1977, 128, 473-483.	1.1	23