Joseph A Trapani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7651859/publications.pdf

Version: 2024-02-01

147 13,111 59
papers citations h-index

152 152 152 13679 all docs docs citations times ranked citing authors

111

g-index

#	Article	IF	CITATIONS
1	BET Inhibition Enhances TNF-Mediated Antitumor Immunity. Cancer Immunology Research, 2022, 10, 87-107.	3.4	8
2	The pore conformation of lymphocyte perforin. Science Advances, 2022, 8, eabk3147.	10.3	10
3	Natural killer cells kill extracellular Pseudomonas aeruginosa using contact-dependent release of granzymes B and H. PLoS Pathogens, 2022, 18, e1010325.	4.7	13
4	Imaging immunity in patients with cancer using positron emission tomography. Npj Precision Oncology, 2022, 6, 24.	5.4	13
5	Characterization of the treatment-naive immune microenvironment in melanoma with <i>BRAF</i> mutation., 2022, 10, e004095.		7
6	IFN- \hat{l}^3 + cytotoxic CD4+ T lymphocytes are involved in the pathogenesis of colitis induced by IL-23 and the food colorant Red 40., 2022, 19, 777-790.		16
7	ESCRT-mediated membrane repair protects tumor-derived cells against T cell attack. Science, 2022, 376, 377-382.	12.6	47
8	Preclinical Activity and Pharmacokinetic/Pharmacodynamic Relationship for a Series of Novel Benzenesulfonamide Perforin Inhibitors. ACS Pharmacology and Translational Science, 2022, 5, 429-439.	4.9	3
9	Lipid specificity of the immune effector perforin. Faraday Discussions, 2021, 232, 236-255.	3.2	7
10	Crossâ€ŧalk between tumors at anatomically distinct sites. FEBS Journal, 2021, 288, 81-90.	4.7	9
11	Words of Advice: choosing the right lab for your postâ€doctoral fellowship. FEBS Journal, 2021, 288, 1734-1741.	4.7	О
12	SUGAR-seq enables simultaneous detection of glycans, epitopes, and the transcriptome in single cells. Science Advances, 2021, 7, .	10.3	46
13	Myeloma natural killer cells are exhausted and have impaired regulation of activation. Haematologica, 2021, 106, 2522-2526.	3.5	8
14	Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nature Immunology, 2021, 22, 851-864.	14.5	97
15	Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nature Communications, 2021, 12, 4270.	12.8	37
16	Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers, 2021, 13, 4704.	3.7	9
17	PVRIG is a novel natural killer cell immune checkpoint receptor in acute myeloid leukemia. Haematologica, 2021, 106, 3115-3124.	3.5	17
18	Untimely TGFÎ ² responses in COVID-19 limit antiviral functions of NK cells. Nature, 2021, 600, 295-301.	27.8	146

#	Article	IF	CITATIONS
19	Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines, 2021, 9, 1798.	3.2	6
20	Differential effects of BTK inhibitors ibrutinib and zanubrutinib on NK-cell effector function in patients with mantle cell lymphoma. Haematologica, 2020, 105, e76-e79.	3.5	37
21	Inhibition of the Cytolytic Protein Perforin Prevents Rejection of Transplanted Bone Marrow Stem Cells in Vivo. Journal of Medicinal Chemistry, 2020, 63, 2229-2239.	6.4	7
22	Enhancing chimeric antigen receptor Tâ€cell immunotherapy against cancer using a nanoemulsionâ€based vaccine targeting crossâ€presenting dendritic cells. Clinical and Translational Immunology, 2020, 9, e1157.	3.8	23
23	Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research, 2020, 80, 4129-4144.	0.9	179
24	Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nature Immunology, 2020, 21, 914-926.	14.5	114
25	Recovery of natural killer cell cytotoxicity in a A91V perforinhomozygous patient following severe haemophagocytic lymphohistiocytosis. British Journal of Haematology, 2020, 190, 458-461.	2.5	2
26	Differential cleavage of viral polypeptides by allotypic variants of granzyme B skews immunity to mouse cytomegalovirus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140457.	2.3	2
27	Prevalence and disease predisposition of p.A91V perforin in an aged population of European ancestry. Blood, 2020, 135, 582-584.	1.4	6
28	Immune profiling of pediatric solid tumors. Journal of Clinical Investigation, 2020, 130, 3391-3402.	8.2	27
29	Challenges of PD-L1 testing in non-small cell lung cancer and beyond. Journal of Thoracic Disease, 2020, 12, 4541-4548.	1.4	13
30	Antigenâ€specific <scp>CD</scp> 4 ⁺ <scp>CD</scp> 25 ⁺ T cells induced by locally expressed <scp>ICOS</scp> â€ig: the role of Foxp3, Perforin, Granzyme B and <scp>IL</scp> â€i0 â€an experimental study. Transplant International, 2019, 32, 1203-1215.	1.6	4
31	Distinguishing perforin-mediated lysis and granzyme-dependent apoptosis. Methods in Enzymology, 2019, 629, 291-306.	1.0	7
32	Lipid order and charge protect killer T cells from accidental death. Nature Communications, 2019, 10, 5396.	12.8	56
33	Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death and Disease, 2018, 9, 442.	6.3	20
34	Adaptive reprogramming of NK cells in X-linked lymphoproliferative syndrome. Blood, 2018, 131, 699-702.	1.4	5
35	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	11.9	244
36	Bi-Allelic Mutations in STXBP2 Reveal a Complementary Role for STXBP1 in Cytotoxic Lymphocyte Killing. Frontiers in Immunology, 2018, 9, 529.	4.8	16

#	Article	IF	Citations
37	Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3â^ Cell†Mediated Modulation of CD103+ Dendritic Cells. Cancer Immunology Research, 2018, 6, 1069-1081.	3.4	67
38	Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death and Differentiation, 2017, 24, 961-970.	11.2	52
39	Benzenesulphonamide inhibitors of the cytolytic protein perforin. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1050-1054.	2.2	12
40	A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells. Cancer Research, 2017, 77, 1296-1309.	0.9	61
41	HDAC Inhibitor Panobinostat Engages Host Innate Immune Defenses to Promote the Tumoricidal Effects of Trastuzumab in HER2+ Tumors. Cancer Research, 2017, 77, 2594-2606.	0.9	23
42	Real-time visualization of perforin nanopore assembly. Nature Nanotechnology, 2017, 12, 467-473.	31.5	88
43	Substituted arylsulphonamides as inhibitors of perforin-mediated lysis. European Journal of Medicinal Chemistry, 2017, 137, 139-155.	5.5	7
44	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	7.0	95
45	Regulation of perforin activation and preâ€synaptic toxicity through Câ€terminal glycosylation. EMBO Reports, 2017, 18, 1775-1785.	4.5	27
46	Late-Onset Non-HLH Presentations of Growth Arrest, Inflammatory Arachnoiditis, and Severe Infectious Mononucleosis, in Siblings with Hypomorphic Defects in UNC13D. Frontiers in Immunology, 2017, 8, 944.	4.8	14
47	Serglycin determines secretory granule repertoire and regulates natural killer cell and cytotoxic T lymphocyte cytotoxicity. FEBS Journal, 2016, 283, 947-961.	4.7	31
48	Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C. Journal of Biological Chemistry, 2016, 291, 18740-18752.	3.4	19
49	Missense mutations in the perforin ($<$ i>PRF1 $<$ /i $>$) gene as a cause of hereditary cancer predisposition. Oncolmmunology, 2016, 5, e1179415.	4.6	18
50	Diarylthiophenes as inhibitors of the pore-forming protein perforin. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 355-360.	2.2	22
51	Bigger, Stronger, Faster: Chimeric Antigen Receptor T Cells Are Olympic Killers. Blood, 2016, 128, 814-814.	1.4	2
52	A role for multiple chimeric antigen receptor-expressing leukocytes in antigen-specific responses to cancer. Oncotarget, 2016, 7, 34582-34598.	1.8	13
53	Failed CTL/NK cell killing and cytokine hypersecretion are directly linked through prolonged synapse time. Journal of Experimental Medicine, 2015, 212, 307-317.	8.5	188
54	Perforin and granzymes: function, dysfunction and human pathology. Nature Reviews Immunology, 2015, 15, 388-400.	22.7	858

#	Article	IF	Citations
55	Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding. Journal of Biological Chemistry, 2015, 290, 31101-31112.	3.4	4
56	CAR-T Cells Inflict Sequential Killing of Multiple Tumor Target Cells. Cancer Immunology Research, 2015, 3, 483-494.	3.4	103
57	Heterozygosity for the common perforin mutation, p.A91V, impairs the cytotoxicity of primary natural killer cells from healthy individuals. Immunology and Cell Biology, 2015, 93, 575-580.	2.3	42
58	Conformational Changes during Pore Formation by the Perforin-Related Protein Pleurotolysin. PLoS Biology, 2015, 13, e1002049.	5.6	114
59	Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib. Oncolmmunology, 2015, 4, e1038011.	4.6	4
60	Structural Basis for Ca2+-mediated Interaction of the Perforin C2 Domain with Lipid Membranes. Journal of Biological Chemistry, 2015, 290, 25213-25226.	3.4	25
61	B cellâ€derived circulating granzyme B is a feature of acute infectious mononucleosis. Clinical and Translational Immunology, 2015, 4, e38.	3.8	15
62	Perforin-dependent cytotoxicity: â€~Kiss of death' or prolonged embrace with darker elocation-idnseque11es?. Oncolmmunology, 2015, 4, e1036215.	4.6	6
63	CAR-T cells are serial killers. Oncolmmunology, 2015, 4, e1053684.	4.6	14
64	A Radio-Resistant Perforin-Expressing Lymphoid Population Controls Allogeneic T Cell Engraftment, Activation, and Onset of Graft-versus-Host Disease in Mice. Biology of Blood and Marrow Transplantation, 2015, 21, 242-249.	2.0	3
65	A Method for Detecting Intracellular Perforin in Mouse Lymphocytes. Journal of Immunology, 2014, 193, 5744-5750.	0.8	9
66	A Natural Genetic Variant of Granzyme B Confers Lethality to a Common Viral Infection. PLoS Pathogens, 2014, 10, e1004526.	4.7	16
67	A Colorimetric Assay that Specifically Measures Granzyme B Proteolytic Activity: Hydrolysis of Boc-Ala-Ala-Asp-S-Bzl. Journal of Visualized Experiments, 2014, , e52419.	0.3	6
68	The Perforin Pore Facilitates the Delivery of Cationic Cargos. Journal of Biological Chemistry, 2014, 289, 9172-9181.	3.4	30
69	TRAIL+ NK Cells Control CD4+ T Cell Responses during Chronic Viral Infection to Limit Autoimmunity. Immunity, 2014, 41, 646-656.	14.3	158
70	B-CLL cells acquire APC- and CTL-like phenotypic characteristics after stimulation with CpG ODN and IL-21. International Immunology, 2014, 26, 383-395.	4.0	13
71	Rapid and Unidirectional Perforin Pore Delivery at the Cytotoxic Immune Synapse. Journal of Immunology, 2013, 191, 2328-2334.	0.8	72
72	Perforin forms transient pores on the target cell plasma membrane to facilitate rapid access of granzymes during killer cell attack. Blood, 2013, 121, 2659-2668.	1.4	208

#	Article	IF	Citations
73	Defining the interaction of perforin with calcium and the phospholipid membrane. Biochemical Journal, 2013, 456, 323-335.	3.7	16
74	Perforinopathy: A Spectrum of Human Immune Disease Caused by Defective Perforin Delivery or Function. Frontiers in Immunology, 2013, 4, 441.	4.8	58
75	Human perforin mutations and susceptibility to multiple primary cancers. Oncolmmunology, 2013, 2, e24185.	4.6	57
76	Protecting a serial killer: pathways for perforin trafficking and self-defence ensure sequential target cell death. Trends in Immunology, 2012, 33, 406-412.	6.8	71
77	The immunostimulatory effect of lenalidomide on NK-cell function is profoundly inhibited by concurrent dexamethasone therapy. Blood, 2011, 117, 1605-1613.	1.4	152
78	Response: dexamethasone dose alters expression of NK activating receptors in vivo. Blood, 2011, 118, 6466-6468.	1.4	4
79	Protection from Endogenous Perforin: Glycans and the C Terminus Regulate Exocytic Trafficking in Cytotoxic Lymphocytes. Immunity, 2011, 34, 879-892.	14.3	63
80	The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature, 2010, 468, 447-451.	27.8	364
81	The Molecular Basis for Perforin Oligomerization and Transmembrane Pore Assembly. Immunity, 2009, 30, 684-695.	14.3	123
82	Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9809-9814.	7.1	114
83	The MACPF/CDC family of pore-forming toxins. Cellular Microbiology, 2008, 10, 1765-1774.	2.1	250
84	A Renaissance in Understanding the Multiple and Diverse Functions of Granzymes?. Immunity, 2008, 29, 665-667.	14.3	19
85	Measuring cell death mediated by cytotoxic lymphocytes or their granule effector molecules. Methods, 2008, 44, 241-249.	3.8	22
86	Targeting Lewis Y-Positive Multiple Myeloma and Acute Myeloid Leukemia with Gene-Modified T Cells Demonstrating Memory Phenotype. Blood, 2008, 112, 3900-3900.	1.4	7
87	Residual active granzyme B in cathepsin C–null lymphocytes is sufficient for perforin-dependent target cell apoptosis. Journal of Cell Biology, 2007, 176, 425-433.	5. 2	63
88	Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood, 2007, 110, 1184-1190.	1.4	82
89	The complex issue of regulating perforin expression. Trends in Immunology, 2007, 28, 243-245.	6.8	8
90	Apoptosis induced by the lymphocyte effector molecule perforin. Current Opinion in Immunology, 2007, 19, 339-347.	5 . 5	123

#	Article	IF	Citations
91	The granzyme B gene is highly polymorphic in wild mice but essentially invariant in common inbred laboratory strains. Tissue Antigens, 2007, 70, 198-204.	1.0	19
92	Infective, Neoplastic, and Homeostatic Sequelae of the Loss of Perforin Function in Humans. Advances in Experimental Medicine and Biology, 2007, 601, 235-242.	1.6	10
93	Addressing the mysteries of perforin function. Immunology and Cell Biology, 2006, 84, 66-71.	2.3	43
94	Perforin-mediated target-cell death and immune homeostasis. Nature Reviews Immunology, 2006, 6, 940-952.	22.7	494
95	The major human and mouse granzymes are structurally and functionally divergent. Journal of Cell Biology, 2006, 175, 619-630.	5.2	187
96	Cytotoxic T lymphocyte–induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. Journal of Cell Biology, 2006, 173, 133-144.	5.2	90
97	A functional analysis of the putative polymorphisms A91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis. Blood, 2005, 105, 4700-4706.	1.4	92
98	Immune surveillance of lymphoma in humans?. Blood, 2005, 105, 4159-4160.	1.4	2
99	The dual adverse effects of TGF- \hat{l}^2 secretion on tumor progression. Cancer Cell, 2005, 8, 349-350.	16.8	70
100	Cationic Sites on Granzyme B Contribute to Cytotoxicity by Promoting Its Uptake into Target Cells. Molecular and Cellular Biology, 2005, 25, 7854-7867.	2.3	75
101	Calcium-dependent Plasma Membrane Binding and Cell Lysis by Perforin Are Mediated through Its C2 Domain. Journal of Biological Chemistry, 2005, 280, 8426-8434.	3.4	131
102	A Central Role for Bid in Granzyme B-induced Apoptosis. Journal of Biological Chemistry, 2005, 280, 4476-4482.	3.4	111
103	Granzyme M Mediates a Novel Form of Perforin-dependent Cell Death. Journal of Biological Chemistry, 2004, 279, 22236-22242.	3.4	113
104	The Functional Basis for Hemophagocytic Lymphohistiocytosis in a Patient with Co-inherited Missense Mutations in the Perforin (PFN1) Gene. Journal of Experimental Medicine, 2004, 200, 811-816.	8.5	67
105	Gene-Engineered T Cells as a Superior Adjuvant Therapy for Metastatic Cancer. Journal of Immunology, 2004, 173, 2143-2150.	0.8	77
106	Granzyme B: pro-apoptotic, antiviral and antitumor functions. Current Opinion in Immunology, 2003, 15, 533-543.	5 . 5	218
107	Caspase Activation by Granzyme B Is Indirect, and Caspase Autoprocessing Requires the Release of Proapoptotic Mitochondrial Factors. Immunity, 2003, 18, 319-329.	14.3	147
108	A clathrin/dynamin- and mannose-6-phosphate receptor–independent pathway for granzyme B–induced cell death. Journal of Cell Biology, 2003, 160, 223-233.	5.2	99

#	Article	IF	Citations
109	Cutting Edge: Granzymes A and B Are Not Essential for Perforin-Mediated Tumor Rejection. Journal of Immunology, 2003, 171, 515-518.	0.8	86
110	Tumor-mediated apoptosis of cancer-specific T lymphocytesâ€"Reversing the "kiss of deathâ€?. Cancer Cell, 2002, 2, 169-171.	16.8	10
111	Functional significance of the perforin/granzyme cell death pathway. Nature Reviews Immunology, 2002, 2, 735-747.	22.7	994
112	Dissecting the apoptotic mechanisms of chemotherapeutic drugs and lymphocytes to design effective anticancer therapies. Drug Development Research, 2001, 52, 549-557.	2.9	3
113	A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunology, 2001, 2, 293-299.	14.5	650
114	Functional interaction between p53 and the interferon-inducible nucleoprotein IFI 16. Oncogene, 2000, 19, 6033-6042.	5.9	95
115	Differential Tumor Surveillance by Natural Killer (Nk) and Nkt Cells. Journal of Experimental Medicine, 2000, 191, 661-668.	8.5	720
116	Initiation of Apoptosis by Granzyme B Requires Direct Cleavage of Bid, but Not Direct Granzyme B–Mediated Caspase Activation. Journal of Experimental Medicine, 2000, 192, 1403-1414.	8.5	331
117	Perforin-Mediated Cytotoxicity Is Critical for Surveillance of Spontaneous Lymphoma. Journal of Experimental Medicine, 2000, 192, 755-760.	8.5	481
118	Cytosolic Delivery of Granzyme B by Bacterial Toxins: Evidence that Endosomal Disruption, in Addition to Transmembrane Pore Formation, Is an Important Function of Perforin. Molecular and Cellular Biology, 1999, 19, 8604-8615.	2.3	185
119	CTL granules: evolution of vesicles essential for combating virus infections. Trends in Immunology, 1999, 20, 351-356.	7.5	89
120	Lymphocyte-Mediated Cytolysis: Dual Apoptotic Mechanisms with Overlapping Cytoplasmic and Nuclear Signalling Pathways. Results and Problems in Cell Differentiation, 1999, , 77-102.	0.7	0
121	Perforin-dependent nuclear entry of granzyme B precedes apoptosis, and is not a consequence of nuclear membrane dysfunction. Cell Death and Differentiation, 1998, 5, 488-496.	11.2	70
122	Spontaneous T cell responses to melanoma differentiation antigens from melanoma patients and healthy subjects. Cancer Immunology, Immunotherapy, 1998, 47, 191-197.	4.2	7
123	Lymphocyte granule-mediated cell death. Seminars in Immunopathology, 1998, 19, 323-343.	4.0	5
124	Dual Mechanisms of Apoptosis Induction by Cytotoxic Lymphocytes. International Review of Cytology, 1998, 182, 111-192.	6.2	64
125	Granzymes. , 1998, , 1026-1030.		0
126	Granzyme B (GraB) Autonomously Crosses the Cell Membrane and Perforin Initiates Apoptosis and GraB Nuclear Localization. Journal of Experimental Medicine, 1997, 185, 855-866.	8.5	216

#	Article	IF	CITATIONS
127	Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene, 1997, 15, 453-457.	5.9	238
128	Localization of Granzyme B in the Nucleus. Journal of Biological Chemistry, 1996, 271, 4127-4133.	3.4	97
129	The Ced-3/Interleukin $1\hat{l}^2$ Converting Enzyme-like Homolog Mch6 and the Lamin-cleaving Enzyme Mch $2\hat{l}\pm$ Are Substrates for the Apoptotic Mediator CPP32. Journal of Biological Chemistry, 1996, 271, 27099-27106.	3.4	269
130	HIN-200: a novel family of IFN-inducible nuclear proteins expressed in leukocytes. Journal of Leukocyte Biology, 1996, 60, 310-316.	3.3	46
131	The use of chimeric human Fclµ receptor I to redirect cytotoxic T lymphocytes to tumors. Journal of Leukocyte Biology, 1996, 60, 721-728.	3.3	28
132	Granzymes: a variety of serine protease specificities encoded by genetically distinct subfamilies. Journal of Leukocyte Biology, 1996, 60, 555-562.	3.3	79
133	Processing of the Nedd2 precursor by ICEâ€like proteases and granzyme B. Genes To Cells, 1996, 1, 673-685.	1.2	63
134	A Cytosolic Granzyme B Inhibitor Related to the Viral Apoptotic Regulator Cytokine Response Modifier A Is Present in Cytotoxic Lymphocytes. Journal of Biological Chemistry, 1996, 271, 27802-27809.	3.4	265
135	Nuclear Transport of Granzyme B (Fragmentin-2). Journal of Biological Chemistry, 1996, 271, 30781-30789.	3.4	96
136	Distinct granzyme expression in human CD3- CD56+ large granular- and CD3- CD56+ small high density-lymphocytes displaying non-MHC-restricted cytolytic activity. Journal of Leukocyte Biology, 1995, 57, 88-93.	3.3	16
137	IFI 16 gene encodes a nuclear protein whose expression is induced by interferons in human myeloid leukaemia cell lines. Journal of Cellular Biochemistry, 1995, 57, 39-51.	2.6	62
138	The closely linked genes encoding the myeloid nuclear differentiation antigen (MNDA) and IFI16 exhibit contrasting haemopoietic expression. Immunogenetics, 1995, 41, 40-43.	2.4	29
139	Granzymes: exogenous porteinases that induce target cell apoptosis. Trends in Immunology, 1995, 16, 202-206.	7.5	369
140	In vitro and in vivo antitumour activity of a chimeric anti-CD19 antibody. Cancer Immunology, Immunotherapy, 1995, 41, 53-60.	4.2	1
141	Use of the 5′ -flanking region of the mouse perforin gene to express human Fcγ receptor I in cytotoxic T lymphocytes. Journal of Leukocyte Biology, 1994, 55, 514-522.	3.3	7
142	Killing by cytotoxic T cells and natural killer cells: Multiple granule serine proteases as initiators of DNA fragmentation. Immunology and Cell Biology, 1993, 71, 201-208.	2.3	41
143	Expression of human perforin in a mouse cytotoxic T lymphocyte cell line: evidence for perturbation of granule-mediated cytotoxicity. Journal of Leukocyte Biology, 1993, 54, 528-533.	3.3	3
144	Activation of cytotoxic cells in hyperplastic lymph nodes from HIV-infected patients. Aids, 1991, 5, 1071-1080.	2.2	54

#	Article	IF	CITATIONS
145	Lymphocyte-Mediated Cytolysis Role of Granule Mediators. Blood Cell Biochemistry, 1991, , 143-162.	0.3	1
146	Activated T Cells Express a Non-HLA-ABC Class I Gene that Is Inducible with Gamma-Interferon. , $1989,, 161-163$.		0
147	Cytotoxic Granules House Potent Proapoptotic Toxins Critical for Antiviral Responses and Immune Homeostasis., 0,, 106-122.		O