
Sandrine Aspeslagh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/765158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent anti-tumor response in cancer patients experiencing pneumonitis related to immune checkpoint blockade. Acta Clinica Belgica, 2021, 76, 144-148.	1.2	2
2	lmmune checkpoint inhibitor therapy for ACTH-secreting pituitary carcinoma: a new emerging treatment?. European Journal of Endocrinology, 2021, 184, K1-K5.	3.7	37
3	C-reactive protein as a biomarker for immune-related adverse events in melanoma patients treated with immune checkpoint inhibitors in the adjuvant setting. Melanoma Research, 2021, 31, 371-377.	1.2	12
4	A Late Dermatologic Presentation of Bullous Pemphigoid Induced by Anti-PD-1 Therapy and Associated with Unexplained Neurological Disorder. Case Reports in Oncology, 2021, 14, 861-867.	0.7	7
5	Sarcoid-like reaction in a BRAF V600E-mutated metastatic melanoma patient during treatment with BRAF/MEK-targeted therapy. Melanoma Research, 2021, 31, 272-276.	1.2	3
6	Bilateral Corneal Perforation in a Patient Under Anti-PD1 Therapy. Cornea, 2021, 40, 245-247.	1.7	10
7	Combining epigenetic drugs with other therapies for solid tumours — past lessons and future promise. Nature Reviews Clinical Oncology, 2020, 17, 91-107.	27.6	283
8	Understanding genetic determinants of resistance to immune checkpoint blockers. Seminars in Cancer Biology, 2020, 65, 123-139.	9.6	9
9	An atypical sarcoid-like reaction during anti-protein death 1 treatment in a patient with metastatic melanoma. Melanoma Research, 2020, 30, 524-527.	1.2	5
10	Impact of solid cancer on in-hospital mortality overall and among different subgroups of patients with COVID-19: a nationwide, population-based analysis. ESMO Open, 2020, 5, e000947.	4.5	63
11	Pneumocystis Infection in Two Patients Treated with Both Immune Checkpoint Inhibitor and Corticoids. Journal of Immunotherapy and Precision Oncology, 2020, 3, 27-30.	1.4	6
12	Treatment duration of checkpoint inhibitors for NSCLC. Lancet Respiratory Medicine,the, 2019, 7, 835-837.	10.7	6
13	PRIMMO study protocol: a phase II study combining PD-1 blockade, radiation and immunomodulation to tackle cervical and uterine cancer. BMC Cancer, 2019, 19, 506.	2.6	46
14	Immune checkpoint blockade for organ transplant patients with advanced cancer: how far can we go?. Current Opinion in Oncology, 2019, 31, 54-64.	2.4	66
15	ls There Room for Immune Checkpoint Inhibitors in Patients Who Have NSCLC With Autoimmune Diseases?. Journal of Thoracic Oncology, 2019, 14, 1701-1703.	1.1	6
16	How to assimilate the tsunami of immune checkpoints inhibitors data into clinical practice?. Current Opinion in Oncology, 2019, 31, 420-423.	2.4	2
17	Long-Term Survival in Patients Responding to Anti–PD-1/PD-L1 Therapy and Disease Outcome upon Treatment Discontinuation. Clinical Cancer Research, 2019, 25, 946-956.	7.0	96
18	Immune checkpoint inhibitors and type 1 diabetes mellitus: a case report and systematic review. European Journal of Endocrinology, 2019, 181, 363-374.	3.7	154

SANDRINE ASPESLAGH

#	Article	IF	CITATIONS
19	Eosinophilic Fasciitis in a Patient Treated by Atezolizumab for Metastatic Triple-Negative Breast Cancer. Journal of Immunotherapy and Precision Oncology, 2019, 2, 101-105.	1.4	5
20	Epigenetic modifiers as new immunomodulatory therapies in solid tumours. Annals of Oncology, 2018, 29, 812-824.	1.2	73
21	Are phase I trials safe for older patients?. Journal of Geriatric Oncology, 2018, 9, 87-92.	1.0	4
22	Cancer immunotherapy-associated hypophysitis. Seminars in Oncology, 2018, 45, 181-186.	2.2	47
23	Importance of choice of materials and methods in <scp>PD</scp> â€L1 and <scp>TIL</scp> assessment in oropharyngeal squamous cell carcinoma. Histopathology, 2018, 73, 500-509.	2.9	37
24	NKp30 isoforms and NKp30 ligands are predictive biomarkers of response to imatinib mesylate in metastatic GIST patients. Oncolmmunology, 2017, 6, e1137418.	4.6	42
25	<i>JAK</i> Mutations as Escape Mechanisms to Anti–PD-1 Therapy. Cancer Discovery, 2017, 7, 128-130.	9.4	24
26	Phase I dose-escalation study of milciclib in combination with gemcitabine in patients with refractory solid tumors. Cancer Chemotherapy and Pharmacology, 2017, 79, 1257-1265.	2.3	25
27	Prognostic markers in oropharyngeal squamous cell carcinoma: focus on CD70 and tumour infiltrating lymphocytes. Pathology, 2017, 49, 397-404.	0.6	43
28	Turning the tide: Clinical utility of PD-L1 expression in squamous cell carcinoma of the head and neck. Oral Oncology, 2017, 70, 34-42.	1.5	38
29	TILs in Head and Neck Cancer: Ready for Clinical Implementation and Why (Not)?. Head and Neck Pathology, 2017, 11, 354-363.	2.6	67
30	Phase I dose-escalation study of plitidepsin in combination with sorafenib or gemcitabine in patients with refractory solid tumors or lymphomas. Anti-Cancer Drugs, 2017, 28, 341-349.	1.4	10
31	In the immuno-oncology era, is anti-PD-1 or anti-PD-L1 immunotherapy modifying the sensitivity to conventional cancer therapies?. European Journal of Cancer, 2017, 87, 65-74.	2.8	19
32	Tumor PD-L1 status and CD8+ tumor-infiltrating T cells: markers of improved prognosis in oropharyngeal cancer. Oncotarget, 2017, 8, 80443-80452.	1.8	78
33	CD70 Expression and Its Correlation with Clinicopathological Variables in Squamous Cell Carcinoma of the Head and Neck. Pathobiology, 2016, 83, 327-333.	3.8	23
34	Phase I dose-escalation study of plitidepsin in combination with bevacizumab in patients with refractory solid tumors. Anti-Cancer Drugs, 2016, 27, 1021-1027.	1.4	7
35	Acquired EGFR Mutation as the Potential Resistance Driver to Crizotinib in a MET-Mutated Tumor. Journal of Thoracic Oncology, 2016, 11, e21-e23.	1.1	8
36	Rationale for anti-OX40 cancer immunotherapy. European Journal of Cancer, 2016, 52, 50-66.	2.8	264

SANDRINE ASPESLAGH

#	Article	IF	CITATIONS
37	Synthesis of C-5″ and C-6″-modified α-GalCer analogues as iNKT-cell agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 3175-3182.	3.0	14
38	Upcoming innovations in lung cancer immunotherapy: focus on immune checkpoint inhibitors. Chinese Clinical Oncology, 2015, 4, 48.	1.2	5
39	An In Silico Approach for Modelling T-Helper Polarizing iNKT Cell Agonists. PLoS ONE, 2014, 9, e87000.	2.5	4
40	Bacterial CD1d–Restricted Glycolipids Induce IL-10 Production by Human Regulatory T Cells upon Cross-Talk with Invariant NKT Cells. Journal of Immunology, 2013, 191, 2174-2183.	0.8	29
41	Enhanced TCR Footprint by a Novel Glycolipid Increases NKT-Dependent Tumor Protection. Journal of Immunology, 2013, 191, 2916-2925.	0.8	37
42	Preclinical Evaluation of Invariant Natural Killer T Cells in the 5T33 Multiple Myeloma Model. PLoS ONE, 2013, 8, e65075.	2.5	24
43	Synthesis of 6″-triazole-substituted α-GalCer analogues as potent iNKT cell stimulating ligands. Bioorganic and Medicinal Chemistry, 2012, 20, 7149-7154.	3.0	14
44	Activated iNKT Cells Promote Memory CD8+ T Cell Differentiation during Viral Infection. PLoS ONE, 2012, 7, e37991.	2.5	38
45	Preclinical Evaluation of Invariant Natural Killer T-Cells in the 5T33 Multiple Myeloma Model. Blood, 2012, 120, 938-938.	1.4	Ο
46	Divergent synthetic approach to 6′′-modified α-GalCer analogues. Organic and Biomolecular Chemistry, 2011, 9, 8413.	2.8	25
47	Galactose-modified iNKT cell agonists stabilized by an induced fit of CD1d prevent tumour metastasis. EMBO Journal, 2011, 30, 2294-2305.	7.8	98
48	Invariant natural killer T cells in rheumatic disease: a joint dilemma. Nature Reviews Rheumatology, 2010, 6, 90-98.	8.0	15
49	Synthesis and Evaluation of Amino-Modified α-GalCer Analogues. Organic Letters, 2010, 12, 2928-2931.	4.6	14
50	Pharmacological sensitivity of ATP release triggered by photoliberation of inositol-1,4,5-trisphosphate and zero extracellular calcium in brain endothelial cells. Journal of Cellular Physiology, 2003, 197, 205-213.	4.1	104