Darerca Owen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7649690/publications.pdf Version: 2024-02-01

DADEDCA OWEN

#	Article	IF	CITATIONS
1	Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Nature, 1997, 388, 693-697.	27.8	264
2	Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Nature, 1999, 399, 384-388.	27.8	172
3	Structure of Cdc42 bound to the GTPase binding domain of PAK. Nature Structural Biology, 2000, 7, 384-388.	9.7	168
4	Delineation of the Cdc42/Rac-Binding Domain of p21-Activated Kinase. Biochemistry, 1998, 37, 7885-7891.	2.5	142
5	Structure of the cyclin-dependent kinase inhibitor p19Ink4d. Nature, 1997, 389, 999-1003.	27.8	100
6	Structures of Ras superfamily effector complexes: What have we learnt in two decades?. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 85-133.	5.2	71
7	Residues in Cdc42 That Specify Binding to Individual CRIB Effector Proteins. Biochemistry, 2000, 39, 1243-1250.	2.5	67
8	The IQGAP1-Rac1 and IQGAP1-Cdc42 Interactions. Journal of Biological Chemistry, 2008, 283, 1692-1704.	3.4	58
9	Molecular Dissection of the Interaction between the Small G Proteins Rac1 and RhoA and Protein Kinase C-related Kinase 1 (PRK1). Journal of Biological Chemistry, 2003, 278, 50578-50587.	3.4	49
10	The Rac1 Polybasic Region Is Required for Interaction with Its Effector PRK1. Journal of Biological Chemistry, 2008, 283, 1492-1500.	3.4	46
11	Solution Structure and Dynamics of the Small GTPase RalB in Its Active Conformation: Significance for Effector Protein Binding. Biochemistry, 2009, 48, 2192-2206.	2.5	41
12	The RalB-RLIP76 Complex Reveals a Novel Mode of Ral-Effector Interaction. Structure, 2010, 18, 985-995.	3.3	40
13	Cdc42 in actin dynamics: An ordered pathway governed by complex equilibria and directional effector handover. Small GTPases, 2017, 8, 237-244.	1.6	39
14	Differential Binding of RhoA, RhoB, and RhoC to Protein Kinase C-Related Kinase (PRK) Isoforms PRK1, PRK2, and PRK3: PRKs Have the Highest Affinity for RhoB. Biochemistry, 2013, 52, 7999-8011.	2.5	37
15	Intrinsically disordered proteins and membranes: a marriage of convenience for cell signalling?. Biochemical Society Transactions, 2020, 48, 2669-2689.	3.4	36
16	Class IA PI3K regulatory subunits: p110-independent roles and structures. Biochemical Society Transactions, 2020, 48, 1397-1417.	3.4	34
17	Investigation of the Interaction between Cdc42 and Its Effector TOCA1. Journal of Biological Chemistry, 2016, 291, 13875-13890.	3.4	27
18	Activation of STAT transcription factors by the Rho-family GTPases. Biochemical Society Transactions, 2020, 48, 2213-2227.	3.4	26

DARERCA OWEN

#	Article	IF	CITATIONS
19	Progress in the therapeutic inhibition of Cdc42 signalling. Biochemical Society Transactions, 2021, 49, 1443-1456.	3.4	25
20	Inhibition of Ral GTPases Using a Stapled Peptide Approach. Journal of Biological Chemistry, 2016, 291, 18310-18325.	3.4	20
21	Allostery and dynamics in small G proteins. Biochemical Society Transactions, 2018, 46, 1333-1343.	3.4	19
22	The non-receptor tyrosine kinase ACK: regulatory mechanisms, signalling pathways and opportunities for attACKing cancer. Biochemical Society Transactions, 2019, 47, 1715-1731.	3.4	19
23	Specificity Determinants on Cdc42 for Binding Its Effector Protein ACKâ€. Biochemistry, 2005, 44, 12373-12383.	2.5	18
24	A Complete Survey of RhoGDI Targets Reveals Novel Interactions with Atypical Small GTPases. Biochemistry, 2021, 60, 1533-1551.	2.5	17
25	Molecular subversion of Cdc42 signalling in cancer. Biochemical Society Transactions, 2021, 49, 1425-1442.	3.4	15
26	Mutational Analysis Reveals a Single Binding Interface between RhoA and Its Effector, PRK1. Biochemistry, 2011, 50, 2860-2869.	2.5	14
27	The discovery and maturation of peptide biologics targeting the small G-protein Cdc42: A bioblockade for Ras-driven signaling. Journal of Biological Chemistry, 2020, 295, 2866-2884.	3.4	14
28	A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK. Journal of Biological Chemistry, 2017, 292, 11361-11373.	3.4	13
29	Thermodynamic Mapping of Effector Protein Interfaces with RalA and RalB. Biochemistry, 2015, 54, 1380-1389.	2.5	11
30	Therapeutic peptides targeting the Ras superfamily. Peptide Science, 2020, 112, e24165.	1.8	10
31	Assembly of nuclear dimers of PI3K regulatory subunits is regulated by the Cdc42-activated tyrosine kinase ACK. Journal of Biological Chemistry, 2022, 298, 101916.	3.4	10
32	Double Mutant Cycle Thermodynamic Analysis of the Hydrophobic Cdc42â^'ACK Proteinâ^'Protein Interaction. Biochemistry, 2007, 46, 14087-14099.	2.5	9
33	The Structure of Binder of Arl2 (BART) Reveals a Novel G Protein Binding Domain. Journal of Biological Chemistry, 2009, 284, 992-999.	3.4	9
34	1H, 13C, and 15N resonance assignments for the small G protein RalB in its active conformation. Biomolecular NMR Assignments, 2007, 1, 147-149.	0.8	7
35	RLIP76 (RalBP1). Small GTPases, 2010, 1, 157-160.	1.6	7
36	Bond swapping from a charge cloud allows flexible coordination of upstream signals through WASP: Multiple regulatory roles for the WASP basic region. Journal of Biological Chemistry, 2018, 293, 15136-15151.	3.4	6

DARERCA OWEN

#	Article	IF	CITATIONS
37	CRIB effector disorder: exquisite function from chaos. Biochemical Society Transactions, 2018, 46, 1289-1302.	3.4	6
38	The structure and function of protein kinase C-related kinases (PRKs). Biochemical Society Transactions, 2021, 49, 217-235.	3.4	6
39	Bioblockades join the assault on small G protein signalling. Seminars in Cancer Biology, 2019, 54, 149-161.	9.6	5
40	Affinity maturation of the RLIP76 Ral binding domain to inform the design of stapled peptides targeting the Ral GTPases. Journal of Biological Chemistry, 2021, 296, 100101.	3.4	5
41	Calmodulin extracts the Ras family protein RalA from lipid bilayers by engagement with two membrane-targeting motifs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	5
42	RLIP76: A Structural and Functional Triumvirate. Cancers, 2021, 13, 2206.	3.7	4
43	1H, 13C and 15N resonance assignments for the active conformation of the small G protein RalB in complex with its effector RLIP76. Biomolecular NMR Assignments, 2008, 2, 179-182.	0.8	3
44	1H, 15N and 13C resonance assignments of the HR1c domain of PRK1, a protein kinase C-related kinase. Biomolecular NMR Assignments, 2020, 14, 245-250.	0.8	2
45	NMR resonance assignments for the active and inactive conformations of the small G protein RalA. Biomolecular NMR Assignments, 2020, 14, 87-91.	0.8	2
46	1H, 13C and 15N resonance assignments of the Cdc42-binding domain of TOCA1. Biomolecular NMR Assignments, 2016, 10, 407-411.	0.8	1
47	Membrane extraction by calmodulin underpins the disparate signalling of RalA and RalB. BioEssays, 2022, 44, e2200011.	2.5	1