
Carlos Barcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7648705/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plasma induced reactive oxygen speciesâ€dependent cytotoxicity in glioblastoma 3D tumourspheres. Plasma Processes and Polymers, 2022, 19, .	3.0	12
2	Lesion-associated microglia and macrophages mediate corralling and react with massive phagocytosis for debris clearance and wound healing after LPS-induced dopaminergic depletion. Journal of Neuroimmunology, 2022, 367, 577874.	2.3	1
3	Ursolic Acid Inhibits Collective Cell Migration and Promotes JNK-Dependent Lysosomal Associated Cell Death in Glioblastoma Multiforme Cells. Pharmaceuticals, 2021, 14, 91.	3.8	15
4	Three-dimensional vascular microenvironment landscape in human glioblastoma. Acta Neuropathologica Communications, 2021, 9, 24.	5.2	15
5	Gossypol Treatment Restores Insufficient Apoptotic Function of DFF40/CAD in Human Glioblastoma Cells. Cancers, 2021, 13, 5579.	3.7	2
6	Phagocytic glioblastoma-associated microglia and macrophages populate invading pseudopalisades. Brain Communications, 2020, 2, fcz043.	3.3	18
7	Cold Atmospheric Plasma induces accumulation of lysosomes and caspase-independent cell death in U373MG glioblastoma multiforme cells. Scientific Reports, 2019, 9, 12891.	3.3	36
8	The MTOC/Golgi Complex at the T-Cell Immunological Synapse. Results and Problems in Cell Differentiation, 2019, 67, 223-231.	0.7	7
9	Cold Atmospheric Plasma Induces ATP-Dependent Endocytosis of Nanoparticles and Synergistic U373MG Cancer Cell Death. Scientific Reports, 2018, 8, 5298.	3.3	62
10	Imbalance of immunological synapse-kinapse states reflects tumor escape to immunity in glioblastoma. JCI Insight, 2018, 3, .	5.0	18
11	Studying the T Cell-Astrocyte Immune Synapse. Methods in Molecular Biology, 2017, 1584, 517-531.	0.9	1
12	Editorial: Glial Cells: Managers of Neuro-Immunity. Frontiers in Cellular Neuroscience, 2016, 10, 60.	3.7	7
13	An intrinsic DFF40/CAD endonuclease deficiency impairs oligonucleosomal DNA hydrolysis during caspase-dependent cell death: a common trait in human glioblastoma cells. Neuro-Oncology, 2016, 18, 950-961.	1.2	17
14	Kupferâ€ŧype immunological synapses in vivo : Raison D'être of SMAC. Immunology and Cell Biology, 2015, 93, 51-56.	2.3	5
15	MPTP: Advances from an Evergreen Neurotoxin. , 2014, , 2099-2124.		0
16	Persistent phagocytic characteristics of microglia in the substantia nigra of long-term Parkinsonian macaques. Journal of Neuroimmunology, 2013, 261, 60-66.	2.3	35
17	Evidence of oligodendrogliosis in 1â€methylâ€4â€phenylâ€1,2,3,6â€ŧetrahydropyridine (MPTP)â€induced Parkinsonism. Neuropathology and Applied Neurobiology, 2013, 39, 132-143.	3.2	20
18	Glial-Mediated Inflammation Underlying Parkinsonism. Scientifica, 2013, 2013, 1-15.	1.7	22

CARLOS BARCIA

#	Article	IF	CITATIONS
19	Imaging the microanatomy of astrocyte–T-cell interactions in immune-mediated inflammation. Frontiers in Cellular Neuroscience, 2013, 7, 58.	3.7	20
20	Immunology and the Central Nervous System. Clinical and Developmental Immunology, 2013, 2013, 1-3.	3.3	1
21	Lipoic Acid Treatment after Brain Injury: Study of the Glial Reaction. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	9
22	ROCK/Cdc42-mediated microglial motility and gliapse formation lead to phagocytosis of degenerating dopaminergic neurons in vivo. Scientific Reports, 2012, 2, 809.	3.3	117
23	Immune-mediated Loss of Transgene Expression From Virally Transduced Brain Cells Is Irreversible, Mediated by IFNγ, Perforin, and TNFα, and due to the Elimination of Transduced Cells. Molecular Therapy, 2012, 20, 808-819.	8.2	17
24	Neuroprotection of lipoic acid treatment promotes angiogenesis and reduces the glial scar formation after brain injury. Neuroscience, 2012, 224, 102-115.	2.3	27
25	Who else was intoxicated with MPTP in Santa Clara?. Parkinsonism and Related Disorders, 2012, 18, 1005-1006.	2.2	2
26	CCL2-Expressing Astrocytes Mediate the Extravasation of T Lymphocytes in the Brain. Evidence from Patients with Glioma and Experimental Models In Vivo. PLoS ONE, 2012, 7, e30762.	2.5	37
27	The Involvement of Neuroinflammation and Kynurenine Pathway in Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-11.	1.1	64
28	Inflammation and Parkinson's Disease. Parkinson's Disease, 2011, 2011, 1-2.	1.1	9
29	IFN-Î ³ signaling, with the synergistic contribution of TNF-α, mediates cell specific microglial and astroglial activation in experimental models of Parkinson's disease. Cell Death and Disease, 2011, 2, e142-e142.	6.3	212
30	No Lewy pathology in monkeys with over 10 years of severe MPTP Parkinsonism. Movement Disorders, 2009, 24, 1519-1523.	3.9	72
31	MPTP administration increases plasma levels of acute phase proteins in non-human primates (Macaca) Tj ETQq1 1	0.78431 2.1	4 rgBT /Ove
32	Inflammatory Response in Parkinsonism. , 2009, , 245-252.		6
33	Increase of Secondary Processes of Microglial and Astroglial Cells After MPTP-Induced Degeneration in Substantia Nigra Pars Compacta of Non Human Primates. , 2009, , 253-258.		7
34	Infiltrating CTLs in Human Glioblastoma Establish Immunological Synapses with Tumorigenic Cells. American Journal of Pathology, 2009, 175, 786-798.	3.8	49
35	Flt3L and TK gene therapy eradicate multifocal glioma in a syngeneic glioblastoma model. Neuro-Oncology, 2008, 10, 19-31.	1.2	68
36	CD20, CD3, and CD40 Ligand Microclusters Segregate Three-Dimensionally In Vivo at B-Cell-T-Cell Immunological Synapses after Viral Immunity in Primate Brain. Journal of Virology, 2008, 82, 9978-9993.	3.4	17

CARLOS BARCIA

#	Article	IF	CITATIONS
37	In Vivo Polarization of IFN-Î ³ at Kupfer and Non-Kupfer Immunological Synapses during the Clearance of Virally Infected Brain Cells. Journal of Immunology, 2008, 180, 1344-1352.	0.8	35
38	Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims. Neuropsychiatric Disease and Treatment, 2008, 4, 413.	2.2	6
39	T Cells' Immunological Synapses Induce Polarization of Brain Astrocytes In Vivo and In Vitro: A Novel Astrocyte Response Mechanism to Cellular Injury. PLoS ONE, 2008, 3, e2977.	2.5	46
40	Optimization of adenoviral vector-mediated transgene expression in the canine brain in vivo, and in canine glioma cells in vitro. Neuro-Oncology, 2007, 9, 245-258.	1.2	40
41	One-year Expression From High-capacity Adenoviral Vectors in the Brains of Animals With Pre-existing Anti-adenoviral Immunity: Clinical Implications. Molecular Therapy, 2007, 15, 2154-2163.	8.2	78
42	In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. Journal of Experimental Medicine, 2006, 203, 2095-2107.	8.5	96
43	Immunological thresholds in neurological gene therapy: highly efficient elimination of transduced cells might be related to the specific formation of immunological synapses between T cells and virus-infected brain cells. Neuron Glia Biology, 2006, 2, 309-322.	1.6	29
44	Rapid Upregulation of Interferon-Regulated and Chemokine mRNAs upon Injection of 10 8 International Units, but Not Lower Doses, of Adenoviral Vectors into the Brain. Journal of Virology, 2006, 80, 5655-5659.	3.4	21
45	Fms-Like Tyrosine Kinase 3 Ligand Recruits Plasmacytoid Dendritic Cells to the Brain. Journal of Immunology, 2006, 176, 3566-3577.	0.8	88
46	Adenoviral vectors encoding tumor necrosis factor-α and FasL induce apoptosis of normal and tumoral anterior pituitary cells. Journal of Endocrinology, 2006, 189, 681-690.	2.6	10
47	Immune Regulation of Transgene Expression in the Brain: B Cells Regulate an Early Phase of Elimination of Transgene Expression from Adenoviral Vectors. Viral Immunology, 2006, 19, 508-517.	1.3	7
48	Regulatable Gutless Adenovirus Vectors Sustain Inducible Transgene Expression in the Brain in the Presence of an Immune Response against Adenoviruses. Journal of Virology, 2006, 80, 27-37.	3.4	89
49	In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain. Journal of Cell Biology, 2006, 174, i10-i10.	5.2	Ο
50	Visceral signals reach visual cortex during slow wave sleep: study in monkeys. Acta Neurobiologiae Experimentalis, 2006, 66, 69-73.	0.7	15
51	Morphological impairments in retinal neurons of the scotopic visual pathway in a monkey model of Parkinson's disease. Journal of Comparative Neurology, 2005, 493, 261-273.	1.6	55
52	Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 2005, 112, 1237-1248.	2.8	94
53	Stability of Lentiviral Vector-Mediated Transgene Expression in the Brain in the Presence of Systemic Antivector Immune Responses. Human Gene Therapy, 2005, 16, 741-751.	2.7	137
54	Regulatable gene expression systems for gene therapy applications: progress and future challenges. Molecular Therapy, 2005, 12, 189-211.	8.2	252

CARLOS BARCIA

#	Article	IF	CITATIONS
55	Increased plasma levels of TNF-α but not of IL1-β in MPTP-treated monkeys one year after the MPTP administration. Parkinsonism and Related Disorders, 2005, 11, 435-439.	2.2	59
56	Blood vessels and Parkinsonism. Frontiers in Bioscience - Landmark, 2004, 9, 277.	3.0	34
57	Inflammatory and Anti-glioma Effects of an Adenovirus Expressing Human Soluble Fms-like Tyrosine Kinase 3 Ligand (hsFlt3L): Treatment with hsFlt3L Inhibits Intracranial Glioma Progression. Molecular Therapy, 2004, 10, 1071-1084.	8.2	86
58	Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia, 2004, 46, 402-409.	4.9	181
59	Measurement of motor disability in MPTP-treated macaques using a telemetry system for estimating circadian motor activity. Journal of Neuroscience Methods, 2004, 134, 59-64.	2.5	18
60	MPP+-induced degeneration is potentiated by dicoumarol in cultures of the RCSN-3 dopaminergic cell line. Implications of neuromelanin in oxidative metabolism of dopamine neurotoxicity. Neurotoxicity Research, 2003, 5, 407-410.	2.7	13
61	Parkinson's disease and inflammatory changes. Neurotoxicity Research, 2003, 5, 411-417.	2.7	72
62	Circadian Determinations of Cortisol, Prolactin and Melatonin in Chronic Methyl-Phenyl-Tetrahydropyridine-Treated Monkeys. Neuroendocrinology, 2003, 78, 118-128.	2.5	38
63	Blood Vessels And Neurodegeneration In Parkinson's Disease. Advances in Behavioral Biology, 2002, , 341-347.	0.2	2
64	Functional anatomy of thalamus and basal ganglia. Child's Nervous System, 2002, 18, 386-404.	1.1	533