
## Peter Tseng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764818/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Multiscale, Nano―to Mesostructural Engineering of Silk Biopolymerâ€Interlayer Biosensors for<br>Continuous Comonitoring of Nutrients in Food. Advanced Materials Technologies, 2022, 7, 2100666.                            | 5.8  | 3         |
| 2  | Programmable Multiwavelength Radio Frequency Spectrometry of Chemophysical Environments<br>through an Adaptable Network of Flexible and Environmentally Responsive, Passive Wireless Elements.<br>Small Science, 2022, 2, . | 9.9  | 4         |
| 3  | HEAR: Fog-Enabled Energy-Aware Online Human Eating Activity Recognition. IEEE Internet of Things<br>Journal, 2021, 8, 860-868.                                                                                              | 8.7  | 19        |
| 4  | Paintâ€On Epidermal Electronics for Onâ€Demand Sensors and Circuits. Advanced Electronic Materials, 2021, 7, .                                                                                                              | 5.1  | 9         |
| 5  | Ultra-Sensitive Radio Frequency Biosensor at an Exceptional Point of Degeneracy Induced by Time<br>Modulation. IEEE Sensors Journal, 2021, 21, 7250-7259.                                                                   | 4.7  | 13        |
| 6  | Microelectronicsâ€Free, Augmented Telemetry from Bodyâ€Worn Passive Wireless Sensors. Advanced<br>Materials Technologies, 2021, 6, 2001127.                                                                                 | 5.8  | 8         |
| 7  | Wireless Qi-Powered, Multinodal and Multisensory Body Area Network for Mobile Health. IEEE<br>Internet of Things Journal, 2021, 8, 7600-7609.                                                                               | 8.7  | 16        |
| 8  | Fluidic Infiltrative Assembly of 3D Hydrogel with Heterogeneous Composition and Function. Advanced Functional Materials, 2021, 31, 2103288.                                                                                 | 14.9 | 9         |
| 9  | Textile-integrated metamaterials for near-field multibody area networks. Nature Electronics, 2021, 4, 808-817.                                                                                                              | 26.0 | 54        |
| 10 | Feature Augmented Hybrid CNN for Stress Recognition Using Wrist-based Photoplethysmography Sensor. , 2021, 2021, 2374-2377.                                                                                                 |      | 11        |
| 11 | Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosensors and Bioelectronics, 2020, 151, 112004.                                                              | 10.1 | 53        |
| 12 | NEWERTRACK: ML-Based Accurate Tracking of In-Mouth Nutrient Sensors Position Using<br>Spectrum-Wide Information. IEEE Transactions on Computer-Aided Design of Integrated Circuits and<br>Systems, 2020, 39, 3833-3841.     | 2.7  | 6         |
| 13 | Multiâ€Functional Hydrogelâ€Interlayer RF/NFC Resonators as a Versatile Platform for Passive and<br>Wireless Biosensing. Advanced Electronic Materials, 2020, 6, 1901311.                                                   | 5.1  | 33        |
| 14 | Selective Manipulation and Trapping of Magnetically Barcoded Materials. Advanced Materials<br>Interfaces, 2019, 6, 1901312.                                                                                                 | 3.7  | 1         |
| 15 | Functional, RFâ€Trilayer Sensors for Toothâ€Mounted, Wireless Monitoring of the Oral Cavity and Food<br>Consumption. Advanced Materials, 2018, 30, e1703257.                                                                | 21.0 | 146       |
| 16 | Elastomeric sensor surfaces for high-throughput single-cell force cytometry. Nature Biomedical<br>Engineering, 2018, 2, 124-137.                                                                                            | 22.5 | 47        |
| 17 | Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces. Advanced Materials, 2018, 30, e1800598.                                                                                                | 21.0 | 98        |
| 18 | Directed assembly of bio-inspired hierarchical materials with controlled nanofibrillar architectures.<br>Nature Nanotechnology, 2017, 12, 474-480.                                                                          | 31.5 | 134       |

Peter Tseng

| #  | Article                                                                                                                                                                                     | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Evaluation of Silk Inverse Opals for "Smart―Tissue Culture. ACS Omega, 2017, 2, 470-477.                                                                                                    | 3.5  | 13        |
| 20 | High-throughput physical phenotyping of cell differentiation. Microsystems and Nanoengineering, 2017, 3, 17013.                                                                             | 7.0  | 57        |
| 21 | Modulation of Multiscale 3D Lattices through Conformational Control: Painting Silk Inverse Opals<br>with Water and Light. Advanced Materials, 2017, 29, 1702769.                            | 21.0 | 83        |
| 22 | Quantitative Magnetic Separation of Particles and Cells Using Gradient Magnetic Ratcheting. Small, 2016, 12, 1891-1899.                                                                     | 10.0 | 41        |
| 23 | Multiparameter mechanical and morphometric screening of cells. Scientific Reports, 2016, 6, 37863.                                                                                          | 3.3  | 44        |
| 24 | Bio-functionalized silk hydrogel microfluidic systems. Biomaterials, 2016, 93, 60-70.                                                                                                       | 11.4 | 101       |
| 25 | Direct Gradient Photolithography of Photodegradable Hydrogels with Patterned Stiffness Control with Submicrometer Resolution. ACS Biomaterials Science and Engineering, 2016, 2, 1309-1318. | 5.2  | 60        |
| 26 | Silk Fibroinâ€Carbon Nanotube Composite Electrodes for Flexible Biocatalytic Fuel Cells. Advanced<br>Electronic Materials, 2016, 2, 1600190.                                                | 5.1  | 19        |
| 27 | Flexible and Stretchable Micromagnet Arrays for Tunable Biointerfacing. Advanced Materials, 2015, 27, 1083-1089.                                                                            | 21.0 | 20        |
| 28 | Engineering Cortical Neuron Polarity with Nanomagnets on a Chip. ACS Nano, 2015, 9, 3664-3676.                                                                                              | 14.6 | 49        |
| 29 | Metallization and Biopatterning on Ultra-Flexible Substrates via Dextran Sacrificial Layers. PLoS ONE, 2014, 9, e106091.                                                                    | 2.5  | 25        |
| 30 | Substrates with Patterned Extracellular Matrix and Subcellular Stiffness Gradients Reveal Local<br>Biomechanical Responses. Advanced Materials, 2014, 26, 1242-1247.                        | 21.0 | 43        |
| 31 | Advances in high-throughput single-cell microtechnologies. Current Opinion in Biotechnology, 2014, 25, 114-123.                                                                             | 6.6  | 86        |
| 32 | Preparing Substrates Encoding Cell Patterning and Localized Intracellular Magnetic Particle Stimulus<br>for High-Throughput Experimentation. Methods in Cell Biology, 2014, 120, 201-214.   | 1.1  | 2         |
| 33 | Research highlights: microfluidics meets big data. Lab on A Chip, 2014, 14, 828.                                                                                                            | 6.0  | 8         |
| 34 | Research highlights: microtechnologies for engineering the cellular environment. Lab on A Chip, 2014,<br>14, 1226.                                                                          | 6.0  | 11        |
| 35 | Research highlights: printing the future of microfabrication. Lab on A Chip, 2014, 14, 1491.                                                                                                | 6.0  | 64        |
| 36 | Research highlights: microfluidics and magnets. Lab on A Chip, 2014, 14, 2882-2886.                                                                                                         | 6.0  | 12        |

Peter Tseng

| #  | Article                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Magnetic nanoparticle–mediated massively parallel mechanical modulation of single-cell behavior.<br>Nature Methods, 2012, 9, 1113-1119.  | 19.0 | 168       |
| 38 | High-Performance Lateral-Actuating Magnetic MEMS Switch. Journal of Microelectromechanical Systems, 2011, 20, 842-851.                   | 2.5  | 23        |
| 39 | Dynamic Manipulation and Precision Localization of Nanoparticles Internal to Cells. , 2010, , .                                          |      | Ο         |
| 40 | Intracellular patterning of internalized magnetic fluorescent nanoparticles. , 2009, 2009, 5444-7.                                       |      | 1         |
| 41 | Rapid and Dynamic Intracellular Patterning of Cell-Internalized Magnetic Fluorescent Nanoparticles.<br>Nano Letters, 2009, 9, 3053-3059. | 9.1  | 40        |
| 42 | CMOS-compatible back-end process for in-plane actuating ferromagnetic MEMS. , 2009, , .                                                  |      | 4         |