Davide M Proserpio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764712/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	81
2	Metallizationâ€Prompted Robust Porphyrinâ€Based Hydrogenâ€Bonded Organic Frameworks for Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	2.0	15
3	Vibrational properties of graphdiynes as 2D carbon materials beyond graphene. Physical Chemistry Chemical Physics, 2022, 24, 10524-10536.	2.8	6
4	Customized Synthesis: Solvent- and Acid-Assisted Topology Evolution in Zirconium-Tetracarboxylate Frameworks. Inorganic Chemistry, 2022, 61, 7980-7988.	4.0	13
5	The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
6	The Microscopic Diamond Anvil Cell: Stabilization of Superhard, Superconducting Carbon Allotropes at Ambient Pressure. Angewandte Chemie, 2022, 134, .	2.0	3
7	<i>CrystalGrower</i> : a generic computer program for Monte Carlo modelling of crystal growth. Chemical Science, 2021, 12, 1126-1146.	7.4	18
8	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 11391-11397.	13.8	29
9	Highâ€Throughput Electron Diffraction Reveals a Hidden Novel Metal–Organic Framework for Electrocatalysis. Angewandte Chemie, 2021, 133, 11492-11498.	2.0	6
10	The Different Story of π Bonds. Molecules, 2021, 26, 3805.	3.8	2
11	Designing All Graphdiyne Materials as Graphene Derivatives: Topologically Driven Modulation of Electronic Properties. Journal of Physical Chemistry C, 2021, 125, 18456-18466.	3.1	19
12	Anion-directed assembly of three cationic silver(I) coordination polymers with bis(imidazolyl)-based linker: Structural characterization and anion exchange study. Polyhedron, 2020, 175, 114236.	2.2	10
13	Breathing Metal–Organic Framework Based on Flexible Inorganic Building Units. Crystal Growth and Design, 2020, 20, 320-329.	3.0	31
14	Combined DFT and geometrical–topological analysis of Li-ion conductivity in complex hydrides. Inorganic Chemistry Frontiers, 2020, 7, 3115-3125.	6.0	17
15	Size-Selective Urea-Containing Metal–Organic Frameworks as Receptors for Anions. Inorganic Chemistry, 2020, 59, 16421-16429.	4.0	48
16	Hierarchically Structured Allotropes of Phosphorus from Dataâ€Đriven Exploration. Angewandte Chemie - International Edition, 2020, 59, 15880-15885.	13.8	26
17	Hierarchically Structured Allotropes of Phosphorus from Dataâ€Driven Exploration. Angewandte Chemie, 2020, 132, 16014-16019.	2.0	1
18	Record Complexity in the Polycatenation of Three Porous Hydrogen-Bonded Organic Frameworks with Stepwise Adsorption Behaviors. Journal of the American Chemical Society, 2020, 142, 7218-7224.	13.7	132

#	Article	IF	CITATIONS
19	New Quasicrystal Approximant in the Sc–Pd System: From Topological Data Mining to the Bench. Chemistry of Materials, 2020, 32, 1064-1079.	6.7	10
20	A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. Journal of the American Chemical Society, 2020, 142, 2218-2221.	13.7	183
21	A New Group of Edge-transitive 3-Periodic Nets and Their Derived Nets for Reticular Chemistry. Crystal Growth and Design, 2020, 20, 4062-4068.	3.0	8
22	Isotopy classes for 3-periodic net embeddings. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 275-301.	0.1	4
23	Diverse ï€â€"ï€ stacking motifs modulate electrical conductivity in tetrathiafulvalene-based metal–organic frameworks. Chemical Science, 2019, 10, 8558-8565.	7.4	128
24	Predicting superhard materials via a machine learning informed evolutionary structure search. Npj Computational Materials, 2019, 5, .	8.7	74
25	Topochemical Synthesis of Single-Crystalline Hydrogen-Bonded Cross-Linked Organic Frameworks and Their Guest-Induced Elastic Expansion. Journal of the American Chemical Society, 2019, 141, 10915-10923.	13.7	92
26	Ultrasound and solvothermal synthesis of a new urea-based metal-organic framework as a precursor for fabrication of cadmium(II) oxide nanostructures. Inorganica Chimica Acta, 2019, 484, 386-393.	2.4	26
27	Diversifying molecular and topological space via a supramolecular solid-state synthesis: a purely organic mok net sustained by hydrogen bonds. IUCrJ, 2019, 6, 1032-1039.	2.2	8
28	Topological study of diverse hydrogen-bonded patterns found in a system of a nickel(II) complex and the sulfate anion. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 351-359.	0.5	2
29	Data-driven learning and prediction of inorganic crystal structures. Faraday Discussions, 2018, 211, 45-59.	3.2	66
30	Distinguishing Metal–Organic Frameworks. Crystal Growth and Design, 2018, 18, 1738-1747.	3.0	74
31	Topology of Intermetallic Structures: From Statistics to Rational Design. Accounts of Chemical Research, 2018, 51, 21-30.	15.6	30
32	Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers. Nature Communications, 2018, 9, 1745.	12.8	251
33	Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution. Green Chemistry, 2018, 20, 5336-5345.	9.0	64
34	Toward Engineering Chiral Rodlike Metal–Organic Frameworks with Rare Topologies. Inorganic Chemistry, 2018, 57, 12869-12875.	4.0	13
35	Autoluminescent Metal–Organic Frameworks (MOFs): Self-Photoemission of a Highly Stable Thorium MOF. Journal of the American Chemical Society, 2018, 140, 14144-14149	13.7	56
36	Three Cationic, Nonporous Cu ^I -Coordination Polymers: Structural Investigation and Vapor Iodine Capture. Crystal Growth and Design, 2018, 18, 7207-7218.	3.0	22

#	Article	IF	CITATIONS
37	Tailorâ€Made Microporous Metal–Organic Frameworks for the Full Separation of Propane from Propylene Through Selective Size Exclusion. Advanced Materials, 2018, 30, e1805088.	21.0	241
38	Lu5Pd4Ge8 and Lu3Pd4Ge4: Two More Germanides among Polar Intermetallics. Crystals, 2018, 8, 205.	2.2	13
39	Deconstruction of Crystalline Networks into Underlying Nets: Relevance for Terminology Guidelines and Crystallographic Databases. Crystal Growth and Design, 2018, 18, 3411-3418.	3.0	65
40	Generating carbon schwarzites via zeolite-templating. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8116-E8124.	7.1	88
41	Urea Metal–Organic Frameworks for Nitro-Substituted Compounds Sensing. Inorganic Chemistry, 2017, 56, 1446-1454.	4.0	92
42	Extracting Crystal Chemistry from Amorphous Carbon Structures. ChemPhysChem, 2017, 18, 873-877.	2.1	80
43	Self-Catenated Coordination Polymers Involving Bis-pyridyl-bis-amide. Crystal Growth and Design, 2017, 17, 1991-1998.	3.0	16
44	Two Exceptional Patterns of Helical Secondary Building Units Found in Metal–Organic Framework Structures. Crystal Growth and Design, 2017, 17, 2941-2944.	3.0	7
45	Bonding analyses of unconventional carbon allotropes. Carbon, 2017, 121, 154-162.	10.3	19
46	Predicting crystal growth via a unified kinetic three-dimensional partition model. Nature, 2017, 544, 456-459.	27.8	88
47	Self-assembly of three cationic silver(I) coordination networks with flexible bis(pyrazolyl)-based linkers. Polyhedron, 2017, 130, 58-66.	2.2	11
48	How 2-periodic coordination networks are interweaved: entanglement isomerism and polymorphism. CrystEngComm, 2017, 19, 1993-2006.	2.6	51
49	Packing topology in crystals of proteins and small molecules: a comparison. Scientific Reports, 2017, 7, 13209.	3.3	31
50	Capture of volatile iodine by newly prepared and characterized non-porous [Cul] _n -based coordination polymers. CrystEngComm, 2017, 19, 6116-6126.	2.6	26
51	A new glance on R ₂ MGe ₆ (R = rare earth metal, M = another metal) compounds. An experimental and theoretical study of R ₂ PdGe ₆ germanides. Dalton Transactions, 2017, 46, 14021-14033.	3.3	11
52	Ab initio study of new sp3 silicon and germanium allotropes predicted from the zeolite topologies. European Physical Journal B, 2017, 90, 1.	1.5	8
53	Metal–organic frameworks assembled from flexible alicyclic carboxylate and bipyridyl ligands for sensing of nitroaromatic explosives. CrystEngComm, 2016, 18, 4530-4537.	2.6	29
54	The R2Pd3Ge5 (RÂ=ÂLa–Nd, Sm) germanides: synthesis, crystal structure and symmetry reduction. Structural Chemistry, 2016, 27, 1693-1701.	2.0	17

#	Article	IF	CITATIONS
55	<i>Homo Citans</i> und Kohlenstoffallotrope: Für eine Ethik des Zitierens. Angewandte Chemie, 2016, 128, 11122-11139.	2.0	17
56	<i>Homo Citans</i> and Carbon Allotropes: For an Ethics of Citation. Angewandte Chemie - International Edition, 2016, 55, 10962-10976.	13.8	251
57	Searching New Crystalline Substrates for OMBE: Topological and Energetic Aspects of Cleavable Organic Crystals. Crystal Growth and Design, 2016, 16, 1572-1582.	3.0	19
58	Spinel type twins of the new cubic Er6Zn23Ge compound. Zeitschrift Fur Kristallographie - Crystalline Materials, 2016, 231, 71-77.	0.8	1
59	Crystal structures of the new ternary stannides La3Mg4â^'Sn2+ and LaMg3â^'Sn2. Journal of Solid State Chemistry, 2016, 233, 407-414.	2.9	4
60	The taxonomy of rod-packing coordination networksÂ(CNs). Acta Crystallographica Section A: Foundations and Advances, 2016, 72, s435-s435.	0.1	1
61	A Collection of Topological Types of Nanoclusters and Its Application to Icosahedron-Based Intermetallics. Inorganic Chemistry, 2015, 54, 6616-6630.	4.0	35
62	Vacancy Ordering as a Driving Factor for Structural Changes in Ternary Germanides: The New R2Zn1–xGe6Series of Polar Intermetallics (R = Rare-Earth Metal). Inorganic Chemistry, 2015, 54, 2411-2424.	4.0	13
63	Diorganotin(IV) complexes with 2-furancarboxylic acid hydrazone derivative of benzoylacetone: Synthesis, X-ray structure, antibacterial activity, DNA cleavage and molecular docking. Journal of Organometallic Chemistry, 2015, 794, 223-230.	1.8	20
64	Li-Filled, B-Substituted Carbon Clathrates. Journal of the American Chemical Society, 2015, 137, 12639-12652.	13.7	42
65	Structural directing roles of isomeric phenylenediacetate ligands in the formation of coordination networks based on flexible <i>N</i> , <i>N</i> ′-di(3-pyridyl)suberoamide. CrystEngComm, 2015, 17, 90-97.	2.6	25
66	From zeolite nets to sp ³ carbon allotropes: a topology-based multiscale theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 1332-1338.	2.8	45
67	Interpenetration of three-periodic networks in crystal structures: Description and classification methods, geometrical-topological conditions of implementation. Journal of Structural Chemistry, 2014, 55, 1308-1325.	1.0	9
68	Influence of the counter anion and steric hindrance of pyrazolyl and imidazolyl flexible ligands on the structure of zinc-based coordination polymers. Inorganica Chimica Acta, 2014, 414, 217-225.	2.4	21
69	Textural properties of a large collection of computationally constructed MOFs and zeolites. Microporous and Mesoporous Materials, 2014, 186, 207-213.	4.4	38
70	Stepwise formation of heteronuclear coordination networks based on quadruple-bonded dimolybdenum units containing formamidinate ligands. CrystEngComm, 2014, 16, 7385-7388.	2.6	12
71	Phase equilibria in the La–Mg–Ge system at 500°C and crystal structure of the new ternary compounds La11Mg2Ge7 and LaMg3â"xGe2. Journal of Solid State Chemistry, 2014, 218, 184-195.	2.9	13
72	Entangled Two-Dimensional Coordination Networks: A General Survey. Chemical Reviews, 2014, 114, 7557-7580.	47.7	253

#	Article	IF	CITATIONS
73	Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth and Design, 2014, 14, 3576-3586.	3.0	2,448
74	The asc Trinodal Platform: Two‣tep Assembly of Triangular, Tetrahedral, and Trigonalâ€Prismatic Molecular Building Blocks. Angewandte Chemie - International Edition, 2013, 52, 2902-2905.	13.8	88
75	Î ³ -Brass Polyhedral Core in Intermetallics: The Nanocluster Model. Inorganic Chemistry, 2013, 52, 13094-13107.	4.0	57
76	Influence of the counter ion on the structure of two new copper(I) coordination polymers: Synthesis, structural characterization and thermal analysis. Journal of Molecular Structure, 2013, 1037, 236-241.	3.6	26
77	Nets with collisions (unstable nets) and crystal chemistry. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 535-542.	0.3	18
78	Construction of N,N′-di(3-pyridyl)adipoamide-based Zn(ii) and Cd(ii) coordination networks by tuning the isomeric effect of polycarboxylate ligands. CrystEngComm, 2013, 15, 10346.	2.6	17
79	A Database of Topological Representations of Polynuclear Nickel Compounds. European Journal of Inorganic Chemistry, 2013, 2013, 520-526.	2.0	20
80	The Zeolite Conundrum: Why Are There so Many Hypothetical Zeolites and so Few Observed? A Possible Answer from the Zeolite-Type Frameworks Perceived As Packings of Tiles. Chemistry of Materials, 2013, 25, 412-424.	6.7	90
81	A method for topological analysis of high nuclearity coordination clusters and its application to Mn coordination compounds. Dalton Transactions, 2012, 41, 4634.	3.3	80
82	Highly interpenetrated diamondoid nets of Zn(ii) and Cd(ii) coordination networks from mixed ligands. CrystEngComm, 2012, 14, 537-543.	2.6	88
83	Insight into the SBU Condensation in Mg Coordination and Supramolecular Frameworks: A Combined Experimental and Theoretical Study. Journal of the American Chemical Society, 2012, 134, 4762-4771.	13.7	24
84	New Ternary Germanides La4Mg5Ge6 and La4Mg7Ge6: Crystal Structure and Chemical Bonding. Inorganic Chemistry, 2012, 51, 207-214.	4.0	24
85	Totally unimodular nets. Acta Crystallographica Section A: Foundations and Advances, 2012, 68, 286-294.	0.3	3
86	A topological method for the classification of entanglements in crystal networksA preliminary account of this work was presented at the workshop `Topological dynamics in physics and biology' held in Pisa, 12–13 July 2011 Acta Crystallographica Section A: Foundations and Advances, 2012, 68, 484-493.	0.3	66
87	High-nuclearity cobalt coordination clusters: Synthetic, topological and magnetic aspects. Coordination Chemistry Reviews, 2012, 256, 1246-1278.	18.8	204
88	New Types of Multishell Nanoclusters with a Frank–Kasper Polyhedral Core in Intermetallics. Inorganic Chemistry, 2011, 50, 5714-5724.	4.0	39
89	Super Flexibility of a 2D Cu-Based Porous Coordination Framework on Gas Adsorption in Comparison with a 3D Framework of Identical Composition: Framework Dimensionality-Dependent Gas Adsorptivities. Journal of the American Chemical Society, 2011, 133, 10512-10522.	13.7	112
90	The novel metalloligand [Fe(bppd)3] (bppd = 1,3-bis(4-pyridyl)-1,3-propanedionate) for the crystal engineering of heterometallic coordination networks with different silver salts. Anionic control of the structures. CrystEngComm, 2011, 13, 5891.	2.6	45

#	Article	IF	CITATIONS
91	Underlying nets in three-periodic coordination polymers: topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database. CrystEngComm, 2011, 13, 3947.	2.6	626
92	Interpenetrated metal–organic frameworks of self-catenated four-connected mok nets. Chemical Communications, 2011, 47, 5982.	4.1	66
93	Synthesis and characterization of new oligomeric and polymeric complexes based on the [Cull(bpca)]+ unit [Hbpca=bis(2-pyridylcarbonyl)amine]. Inorganica Chimica Acta, 2011, 376, 538-548.	2.4	14
94	Ligand dependent topology changes in six zinc coordination polymers. CrystEngComm, 2010, 12, 711-719.	2.6	33
95	Heterometallic Modular Metal–Organic 3D Frameworks Assembled via New Trisâ€Î²â€Diketonate Metalloligands: Nanoporous Materials for Anion Exchange and Scaffolding of Selected Anionic Guests. Chemistry - A European Journal, 2010, 16, 12328-12341.	3.3	101
96	Halogen-bonded and interpenetrated networks through the self-assembly of diiodoperfluoroarene and tetrapyridyl tectons. Journal of Fluorine Chemistry, 2010, 131, 1218-1224.	1.7	29
97	Polycatenation weaves a 3D web. Nature Chemistry, 2010, 2, 435-436.	13.6	73
98	Synthesis and characterization of new tetra-substituted porphyrins with exo-donor carboxylic groups as building blocks for supramolecular architectures: Catalytic and structural studies of their metalated derivatives. Journal of Porphyrins and Phthalocyanines, 2010, 14, 804-814.	0.8	6
99	Nanocluster Model of Intermetallic Compounds with Giant Unit Cells: β, β′-Mg ₂ Al ₃ Polymorphs. Inorganic Chemistry, 2010, 49, 1811-1818.	4.0	68
100	New Metalâ^'Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response. Crystal Growth and Design, 2010, 10, 1489-1491.	3.0	71
101	Natural Tilings for Zeolite-Type Frameworks. Journal of Physical Chemistry C, 2010, 114, 10160-10170.	3.1	82
102	Vertex-, face-, point-, SchlÃ f i-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm, 2010, 12, 44-48.	2.6	694
103	Topological relations between three-periodic nets. II. Binodal nets. Acta Crystallographica Section A: Foundations and Advances, 2009, 65, 202-212.	0.3	172
104	Crystallization Behavior of Coordination Polymers. 1. Kinetic and Thermodynamic Features of 1,3-Bis(4-pyridyl)propane/MCl ₂ Systems. Crystal Growth and Design, 2009, 9, 5024-5034.	3.0	23
105	Controlling the Structure of Arenedisulfonates toward Catalytically Active Materials. Chemistry of Materials, 2009, 21, 655-661.	6.7	144
106	Three Lanthanum MOF Polymorphs: Insights into Kinetically and Thermodynamically Controlled Phases. Inorganic Chemistry, 2009, 48, 4707-4713.	4.0	56
107	Ligand isomerism-controlled structural diversity of cadmium(II) perchlorate coordination polymers containing dipyridyladipoamide ligands. CrystEngComm, 2009, 11, 168-176.	2.6	82
108	A Short History of an Elusive Yet Ubiquitous Structure in Chemistry, Materials, and Mathematics. Angewandte Chemie - International Edition, 2008, 47, 7996-8000.	13.8	147

#	Article	IF	CITATIONS
109	A Rare-Earth MOF Series: Fascinating Structure, Efficient Light Emitters, and Promising Catalysts. Crystal Growth and Design, 2008, 8, 378-380.	3.0	149
110	An Indium Layered MOF as Recyclable Lewis Acid Catalyst. Chemistry of Materials, 2008, 20, 72-76.	6.7	175
111	Interpenetrated Three-Dimensional Networks of Hydrogen-Bonded Organic Species: A Systematic Analysis of the Cambridge Structural Database. Crystal Growth and Design, 2008, 8, 519-539.	3.0	232
112	Dendrimeric Tectons in Halogen Bonding-Based Crystal Engineering. Crystal Growth and Design, 2008, 8, 654-659.	3.0	54
113	Metal–organic coordination frameworks assembled with the long flexible ligand 4,4′-bis(imidazol-1-ylmethyl)biphenyl. CrystEngComm, 2008, 10, 1191.	2.6	35
114	Interpenetrated three-dimensional hydrogen-bonded networks from metal–organic molecular and one- or two-dimensional polymeric motifs. CrystEngComm, 2008, 10, 1822.	2.6	160
115	Generation of a 4-crossing [2]-catenane motif by the 2D→2D parallel interpenetration of pairs of (4,4) sheets. CrystEngComm, 2008, 10, 1123.	2.6	52
116	A New Polycatenated 3D Array of Interlaced 2D Brickwall Layers and 1D Molecular Ladders in [Mn ₂ (bix) ₃ (NO ₃) ₄]·2CHCl ₃ [bix = 1,4-bis(imidazol-1-ylmethyl)benzene] That Undergoes Supramolecular Isomerization upon Guest Removal, Crystal Growth and Design, 2008, 8, 162-165.	3.0	97
117	Doubleâ^'Step Gas Sorption of a Twoâ^'Dimensional Metalâ^'Organic Framework. Journal of the American Chemical Society, 2007, 129, 12362-12363.	13.7	189
118	Highly Interpenetrated Supramolecular Networks Supported by Nâ‹â‹â‹I Halogen Bonding. Chemistry - A European Journal, 2007, 13, 5765-5772.	3.3	124
119	Preparation and electrochemical behaviour of {[Ru(bipy)4Cl2Ag]NO3(CHCl3)·6H2O}n obtained from the self-assembly of trans-Ru(bipy)4Cl2 and AgNO3. Electrochimica Acta, 2007, 52, 2603-2611.	5.2	18
120	Three-periodic nets and tilings: natural tilings for nets. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, 418-425.	0.3	188
121	New metal–organic frameworks and supramolecular arrays assembled with the bent ditopic ligand 4,4-diaminodiphenylmethane. CrystEngComm, 2006, 8, 696-706.	2.6	47
122	Coordination Symmetry-Dependent Structure Restoration Function of One-Dimensional MOFs by Molecular Respiration. Journal of Physical Chemistry B, 2006, 110, 25565-25567.	2.6	27
123	Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD). Journal of Solid State Chemistry, 2005, 178, 2452-2474.	2.9	335
124	What do we know about three-periodic nets?. Journal of Solid State Chemistry, 2005, 178, 2533-2554.	2.9	247
125	Four new 2D porous polymeric frames from the self-assembly of silver triflate and silver tosylate with free-base and Zn-metallated 5,10,15,20-tetra(4-pyridyl)porphyrin. CrystEngComm, 2005, 7, 78.	2.6	49
126	Parallel and Inclined (1D → 2D) Interlacing Modes in New Polyrotaxane Frameworks [M2(bix)3(SO4)2] [M = Zn(II), Cd(II); Bix = 1,4-Bis(imidazol-1-ylmethyl)benzene]. Crystal Growth and Design, 2005, 5, 37-39.	3.0	117

#	Article	IF	CITATIONS
127	Non-Natural Eight-Connected Solid-State Materials: A New Coordination Chemistry. Angewandte Chemie - International Edition, 2004, 43, 1851-1854.	13.8	176
128	Main Group Element Nets to a T. Inorganic Chemistry, 2004, 43, 2526-2540.	4.0	14
129	The Cation as a Tool to Get Spin-Canted Three-Dimensional Iron(III) Networks. Inorganic Chemistry, 2004, 43, 5177-5179.	4.0	32
130	A new type of entanglement involving one-dimensional ribbons of rings catenated to a three-dimensional network in the nanoporous structure of [Co(bix)2(H2O)2](SO4)·7H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene]. Chemical Communications, 2004, , 380-381.	4.1	223
131	An Unusual Three-Dimensional Coordination Network Formed by Parallel Polycatenation of Two-Fold Interpenetrated (6,3) Layers Based on a Novel Three-Connecting Ligand. Crystal Growth and Design, 2004, 4, 29-32.	3.0	45
132	Supramolecular isomers in the same crystal: a new case involving two different types of layers polycatenated in the 3D architecture of [Cu(bix)2(SO4)]·7.5H2O [bix = 1,4-bis(imidazol-1-ylmethyl)benzene]. CrystEngComm, 2004, 6, 96-101.	2.6	105
133	Interpenetrating metal–organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database. CrystEngComm, 2004, 6, 377-395.	2.6	1,116
134	Open Network Architectures from the Self-Assembly of AgNO3 and 5,10,15,20-Tetra(4-pyridyl)porphyrin (H2tpyp) Building Blocks: The Exceptional Self-Penetrating Topology of the 3D Network of [Ag8(Znlltpyp)7(H2O)2](NO3)8. Angewandte Chemie - International Edition, 2003, 42, 317-322.	13.8	149
135	Polycatenation, polythreading and polyknotting in coordination network chemistry. Coordination Chemistry Reviews, 2003, 246, 247-289.	18.8	1,880
136	Design, Synthesis, and Structural Characterization of Molecular and Supramolecular Heterobimetallic Metallamacrocycles Based on the 1,1â€ [~] -Bis(4-pyridyl)ferrocene (Fe(η5-C5H4-1-C5H4N)2) Ligand. Organometallics, 2003, 22, 4532-4538.	2.3	45
137	New architectures from the self-assembly of MIISO4 salts with bis(4-pyridyl) ligands. The first case of polycatenation involving three distinct sets of 2D polymeric (4,4)-layers parallel to a common axis. CrystEngComm, 2003, 5, 190.	2.6	90
138	Silver(i) polymeric coordination frameworks assembled with the new multimodal ligand 2,2′-azobispyrazine. New Journal of Chemistry, 2003, 27, 483-489.	2.8	64
139	Borromean links and other non-conventional links in â€~polycatenated' coordination polymers: re-examination of some puzzling networks. CrystEngComm, 2003, 5, 269-279.	2.6	361
140	Novel hetero-bimetallic metalla-macrocycles based on the bis-1-pyridyl ferrocene [Fe(η5-C5H4-1-C5H4N)2] ligand. Design, synthesis and structural characterization of the complexes [Fe(η5-C5H4-1-C5H4N)2](Agi)22+/(Cuii)24+/(Znii)24+. Chemical Communications, 2002, , 1080-1081.	4.1	54
141	New polymeric networks from the self-assembly of silver(i) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp. CrystEngComm, 2002, 4, 121.	2.6	252
142	Using long bis(4-pyridyl) ligands designed for the self-assembly of coordination frameworks and architectures. Dalton Transactions RSC, 2002, , 2714-2721.	2.3	126
143	Monitoring the Crystal Growth and Interconversion of New Coordination Networks in the Self-assembly of MCl2Salts (M = Co, Ni, Cu, Cd) and 1,3-Bis(4-pyridyl)propane. Chemistry of Materials, 2002, 14, 12-16.	6.7	65
144	Coordination networks from the self-assembly of silver salts and the linear chain dinitriles NC(CH2)nCN (nÂ= 2 to 7): a systematic investigation of the role of counterions and of the increasing length of the spacers. CrystEngComm, 2002, 4, 413-425.	2.6	105

#	Article	IF	CITATIONS
145	A three-dimensional nanoporous flexible network of â€~square-planar' copper(ii) centres with an unusual topologyElectronic supplementary information (ESI) available: XRPD spectra. See http://www.rsc.org/suppdata/cc/b2/b202588d/. Chemical Communications, 2002, , 1354-1355.	4.1	100
146	Crystal Engineering of Mixed-Metal Ru–Ag Coordination Networks by Using the trans-[RuCl2(pyz)4] (pyz=pyrazine) Building Block This work was supported by MURST within the project "Solid Supermolecules―2000–2001 and by CSMTBO-CNR Center Angewandte Chemie, 2002, 114, 1987.	2.0	7
147	Three Novel Interpenetrating Diamondoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(I) Salts. Chemistry - A European Journal, 2002, 8, 1519-1526.	3.3	208
148	Crystal Engineering of Mixed-Metal Ru–Ag Coordination Networks by Using the trans-[RuCl2(pyz)4] (pyz=pyrazine) Building Block This work was supported by MURST within the project "Solid Supermolecules―2000–2001 and by CSMTBO-CNR Center Angewandte Chemie - International Edition, 2002, 41, 1907.	13.8	60
149	Interlinked molecular squares with [Cu(2,2′-bipy)]2+ corners generating a three-dimensional network of unprecedented topological type. Chemical Communications, 2001, , 1198-1199.	4.1	35
150	Discrete molecular and extended polymeric copper(I) halide complexes of tetradentate thioether macrocycles. Dalton Transactions RSC, 2001, , 456-465.	2.3	83
151	Synthesis, Structural Analysis, and Superconductivity of BaxV6S8. Chemistry of Materials, 2001, 13, 3051-3056.	6.7	5
152	Polymeric Layers Catenated by Ribbons of Rings in a Three-Dimensional Self-Assembled Architecture: A Nanoporous Network with Spongelike Behavior. Angewandte Chemie - International Edition, 2000, 39, 1506-1510.	13.8	357
153	Hydrothermal Synthesis and Structural Characterization of a Novel Hydroxo Stannate: Sr2Sn(OH)8. Journal of Solid State Chemistry, 2000, 151, 56-60.	2.9	18
154	Structural Properties and Topological Diversity of Polymeric Ag(I)-hexamethylenetetramine Complexes: Self-Assembly of Three Novel Two-Dimensional Coordination Networks and Their Supramolecular Interactions. Journal of Solid State Chemistry, 2000, 152, 211-220.	2.9	48
155	Chiral packing of chiral quintuple layers polycatenated to give a three-dimensional network in the coordination polymer [Co5(bpe)9(H2O)8(SO4)4](SO4)·14H2O [bpe = 1,2-bis(4-pyridyl)ethane]. Chemical Communications, 2000, , 1319-1320.	4.1	130
156	New examples of self-catenation in two three-dimensional polymeric co-ordination networks â€. Dalton Transactions RSC, 2000, , 3821-3828.	2.3	74
157	Crystal engineering of coordination polymers and architectures using the [Cu(2,2′-bipy)]2+ molecular corner as building block (bipyÂ=Â2,2′-bipyridyl). CrystEngComm, 2000, 2, 154-163.	2.6	44
158	Low temperature route towards new materials: solvothermal synthesis of metal chalcogenides in ethylenediamine. Coordination Chemistry Reviews, 1999, 190-192, 707-735.	18.8	213
159	Complex Interwoven Polymeric Frames from the Self-Assembly of Silver(I) Cations and Sebaconitrile. Chemistry - A European Journal, 1999, 5, 237-243.	3.3	267
160	Interpenetrated and Noninterpenetrated Three-Dimensional Networks in the Polymeric Species Ag(tta) and 2 Ag(tta)â‹AgNO3 (tta=tetrazolate): The First Examples of the μ4-η1:η1:η1:η1:η1 Bonding Mode for Tetra Angewandte Chemie - International Edition, 1999, 38, 3488-3492.	aztołate.	96
161	1,2-eq,eq-[Re2(CO)8(THF)2]:  A Reactive Re2(CO)8 Fragment That Easily Activates Hâ^'H and Câ^'H Bonds. Organometallics, 1999, 18, 2091-2098.	2.3	31
162	Nanoporous three-dimensional networks topologically related to Cooperite from the self-assembly of copper(I) centres and the "†square-planar'' building block 1,2,4,5-tetracyanobenzene. New Journal of Chemistry, 1999, 23, 397-402.	2.8	44

#	Article	IF	CITATIONS
163	Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwined two-dimensional tilings. Journal of the Chemical Society Dalton Transactions, 1999, , 1799-1804.	1.1	114
164	A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2 [bpethy = 1,2-bis(4-pyridyl)ethyne]. Chemical Communications, 1999, , 449-450.	4.1	148
165	Synthesis, structure characterization and magnetic properties of tellurostannates [M(en)32(Sn2Te6) (M = Mn, Zn). Inorganica Chimica Acta, 1998, 273, 310-315.	2.4	66
166	Solvothermal synthesis and crystal structure of [La(ethylenediamine)4Cl]In2Te4: A 1-D indium telluride. Inorganica Chimica Acta, 1998, 273, 255-258.	2.4	32
167	A Test of the Suitability of CCD Area Detectors for Accurate Electron-Density Studies. Journal of Applied Crystallography, 1998, 31, 583-588.	4.5	15
168	Donor Layerâ^'Acceptor Chain Formation in the LaNiGe2 Structure:  A Crystallographic and Computational Study. Chemistry of Materials, 1998, 10, 1286-1290.	6.7	12
169	Three-dimensional architectures of intertwined planar coordination polymers: the first case of interpenetration involving two different bidimensional polymeric motifs. New Journal of Chemistry, 1998, 22, 1319-1321.	2.8	80
170	Experimental Electron Density Studies for Investigating the Metal π-Ligand Bond: the Case of Bis(1,5-cyclooctadiene)nickel. Journal of the American Chemical Society, 1998, 120, 1447-1455.	13.7	88
171	An unprecedented triply interpenetrated chiral network of â€̃square-planar' metal centres from the self-assembly of copper(II) nitrate and 1,2-bis(4-pyridyl)ethyne. Chemical Communications, 1998, , 1837-1838.	4.1	182
172	Experimental Electron Density in a Transition Metal Dimer:  Metalâ^'Metal and Metalâ^'Ligand Bonds. Journal of the American Chemical Society, 1998, 120, 13429-13435.	13.7	270
173	Polymeric Helical Motifs from the Self-Assembly of Silver Salts and Pyridazine. Inorganic Chemistry, 1998, 37, 5941-5943.	4.0	152
174	Structural studies of molecular-based nanoporous materials. Novel networks of silver(I) cations assembled with the polydentate N-donor bases hexamethylenetetramine and 1,3,5-triazine. Journal of Materials Chemistry, 1997, 7, 1271-1276.	6.7	80
175	Self-assembly of a three-dimensional network from two-dimensional layers via metallic spacers: the (3,4)-connected frame of [Ag3(hmt)2][ClO4]3·2H 2O (hmt = hexamethylenetetramine). Chemical Communications, 1997, , 631-632.	4.1	109
176	Extended networks via hydrogen bond cross-linkages of [M(bipy)] (Mâ€=â€Zn2+ or Fe2+; bipyâ€=â€4,4å linear co-ordination polymers. Journal of the Chemical Society Dalton Transactions, 1997, , 1801-1804.	i€²-bipyrid 1.1	yl) ₁₅₄
177	Site Differentiation by Synchrotron Radiation Resonant Scattering:Â Case Study of BaZn2Ge2. Chemistry of Materials, 1997, 9, 1463-1466.	6.7	9
178	Rb2Hg3Te4:  A New Layered Compound Synthesized from Solvothermal Reactions. Inorganic Chemistry, 1997, 36, 684-687.	4.0	44
179	Self-Assembly of Infinite Double Helical and Tubular Coordination Polymers from Ag(CF3SO3) and 1,3-Bis(4-pyridyl)propane. Inorganic Chemistry, 1997, 36, 3812-3813.	4.0	283
180	Site Preference of Ligand and Metal Substitution in Trigonal-Bipyramidal Metal Carbonyl Clusters. Organometallics, 1997, 16, 2101-2109.	2.3	27

#	Article	IF	CITATIONS
181	New Type of Polymeric Indium Tellurides:  Low-Temperature Synthesis and Structure Characterization of [M(en)3]In2Te6 (M = Fe, Zn) and α- and β-[Mo3(en)3(μ2-Te2)3(μ3-Te)(μ3-O)]In2Te6. Inorganic Chemistry 36, 1437-1442.	y,4 10 97,	53
182	[Rh28N4(CO)41Hx]4-, a Massive Carbonyl Cluster with Four Interstitial Nitrogen Atoms. Journal of the American Chemical Society, 1997, 119, 1450-1451.	13.7	27
183	A Novel 3D Three-Connected Cubic Network Containing [Ag6(hmt)6]6+Hexagonal Units (hmt =) Tj ETQq1 1 0.784	4314 rgBT 4.0	/Overlock 72
184	A novel two-dimensional mercury antimony telluride: low temperature synthesis and characterization of RbHgSbTe3. Journal of Alloys and Compounds, 1997, 262-263, 28-33.	5.5	76
185	Synthesis and Characterization of Ba2SnTe5: A New Zintl Phase Containing Unique One-Dimensional Chains of (SnTe3)2-and Dimeric Units of (Te2)2 Chemistry of Materials, 1996, 8, 598-600.	6.7	24
186	A three-dimensional â€~racemate'. Interpenetration of two enantiomeric networks of the SrSi2topological type in the polymeric complex [Ag2(2,3-Me2pyz)3][SbF6]2(2,3-Me2pyz =) Tj ETQq0 0 0 rgBT /Ov	v erb ock 10	ቼ150 537 1
187	Polymeric Networks of Silver(I) and Copper(I) Ions Linked by an Anionic Acetonyl Derivative of Tetracyanoethylene. Angewandte Chemie International Edition in English, 1996, 35, 1088-1090.	4.4	58
188	Neue Netzwerke von Silber(<scp>I</scp>)â€Kationen in ungewöhnlicher Koordination: die waffelartige Struktur von [Ag(pyz) ₂][Ag ₂ (pyz) ₅](PF ₆) · 2G und das einfache kubische Gerüst von [Ag(pyz) ₃](SbF ₆). Angewandte Chemie, 1995, 107, 2037-2040.	2.0	41
189	Novel Networks of Unusually Coordinated Silver(I) Cations: The Wafer-Like Structure of[Ag(pyz)2][Ag2(pyz)5](PF6)3·2G and the Simple Cubic Frame of[Ag(pyz)3](SbF6). Angewandte Chemie International Edition in English, 1995, 34, 1895-1898.	4.4	286
190	Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds. Journal of Solid State Chemistry, 1995, 117, 247-255.	2.9	62
191	H/D exchange via reversible pyridine ortho-metallation, and competition between Cî—,H oxidative addition and CO coordination in hydrido-carboxyl triangular rhenium clusters: a 1H-NMR investigation. X-ray crystal structure of the anion [Re3(μ-H)2(CO)11(Py)]â^'. Journal of Organometallic Chemistry, 1995, 504, 15-26.	1.8	19
192	Ab Inito Calculations on Possible Hard Materials Based on Interpenetrating Networks: SiO2.cntdot.BeF2. The Journal of Physical Chemistry, 1995, 99, 16261-16263.	2.9	1
193	A Three-Dimensional, Three-Connected Cubic Network of the SrSi2 Topological Type in Coordination Polymer Chemistry: [Ag(hmt)](PF6).cntdot.H2O (hmt = Hexamethylenetetraamine). Journal of the American Chemical Society, 1995, 117, 12861-12862.	13.7	103
194	2D Polymeric Silver(I) Complexes Consisting of Markedly Undulated Sheets of Squares. X-ray Crystal Structures of [Ag(ppz)2](BF4) and [Ag(pyz)2](PF6) (ppz = Piperazine, pyz = Pyrazine). Inorganic Chemistry, 1995, 34, 5698-5700.	4.0	88
195	1-, 2-, and 3-Dimensional Polymeric Frames in the Coordination Chemistry of AgBF4 with Pyrazine. The First Example of Three Interpenetrating 3-Dimensional Triconnected Nets. Journal of the American Chemical Society, 1995, 117, 4562-4569.	13.7	302
196	[Fe(en)3]2(Hg2Te9): A Novel Tellurometalate Containing One-Dimensional Chains of Weakly Bound Zintl Anions (Hg2Te9)4 Inorganic Chemistry, 1995, 34, 6417-6418.	4.0	30
197	Site selectivity in carbon monoxide insertion into a Ptî—,C Ïf-bond of the binuclear complex [(CH3)ClPt(μ-Cl) (μ-Ph2PPy) Pt(CH3)(DMSO)]DMSO. Structural characterization of the derivatives [(CH3CO)ClPt(μ-Cl)(μ-Ph2) 484, 71-80.	Ţj ETQq1 1.8	1 0.784314 12
198	Synthesis and crystal structure of a new alkaline-earth metal chalcogenide: Barium ditelluride. Materials Research Bulletin, 1994, 29, 1041-1048.	5.2	14

#	Article	IF	CITATIONS
199	Reactions of the nitridocarbonyl cluster anion [Rh6N(CO)15]–with strong bases: synthesis and crystal structure of the hydridic dianion [Rh6(Aµ-H)N(CO)14]2–. Journal of the Chemical Society Dalton Transactions, 1994, , 471-475.	1.1	7
200	Interpenetrating diamondoid frameworks of silver(I) cations linked by N,N′-bidentate molecular rods. Journal of the Chemical Society Chemical Communications, 1994, , 2755-2756.	2.0	228
201	Possible Hard Materials Based on Interpenetrating Diamond-like Networks. Journal of the American Chemical Society, 1994, 116, 9634-9637.	13.7	78
202	Synthesis, Chemical Characterization, and Bonding Analysis of the [Ag{Fe(CO)4}2]3-, [Ag4{.mu.2-Fe(CO)4}4]4-, and [Ag5{.mu.2-Fe(CO)4}2{.mu.3-Fe(CO)4}2]3- Cluster Anions. X-ray Structural Determination of[NMe3CH2Ph]4[Ag4Fe4(CO)16] and [NEt4]3[Ag5Fe4(CO)16]. Inorganic Chemistry, 1994, 33, 5320-5328.	4.0	55
203	Theoretical modeling of the mechanism of dioxygen activation and evolution by tetranuclear manganese complexes. Inorganica Chimica Acta, 1993, 213, 319-324.	2.4	16
204	Ortho-metalated pyridine derivatives of the unsaturated rhenium cluster anion [Re3(.muH)4(CO)10] Syntheses and x-ray crystal structures of the tetraethylammonium salts of the anions [Re3(.muH)3(.mueta.2-NC5H4)(CO)10]- and [Re3(.muH)3(.mueta.2-NC5H4)(CO)9(NC5H5)] Organometallics, 1993, 12, 4863-4870.	2.3	15
205	Addition reactions of the unsaturated rhenium cluster anion [Re4(.muH)3(.mu.3-H)2(CO)12]- with carbon monoxide, triphenylphosphine and acetonitrile and characterization of an unstable adduct with water. X-ray crystal structure of the tetraethylammonium salt of the derivative [Re4(.muH)4(.mu.3-H)(CO)12(PPh3)] Inorganic Chemistry. 1993. 32. 803-810.	4.0	8
206	X-ray powder diffraction as a tool for facing twins: the case of the monoclinic niobium cobalt ditelluride and tantalum cobalt ditelluride phases. Inorganic Chemistry, 1993, 32, 4829-4833.	4.0	15
207	Molecular mechanism of photosynthetic oxygen evolution. A theoretical approach. Journal of the American Chemical Society, 1992, 114, 4374-4382.	13.7	76
208	Spectroscopic and theoretical studies on the excited state in diimine dithiolate complexes of platinum(II). Inorganic Chemistry, 1992, 31, 2396-2404.	4.0	121
209	Molecular orbital analysis of the orientation-dependent barrier to direct exchange reactions. Journal of the American Chemical Society, 1991, 113, 3217-3225.	13.7	33
210	The xenon-chlorine conundrum: van der Waals complex or linear molecule?. Journal of the American Chemical Society, 1991, 113, 7184-7189.	13.7	16
211	A new insight from qualitative MO theory into the problem of the Feî—,Fe bond in Fe2(CO)9. Journal of Organometallic Chemistry, 1990, 386, 203-208.	1.8	40
212	Stepwise electron-induced demolition of the Ni-I ?-bond in complexes with tetradentate tripodal ligands: A theoretical rationalization of structural and electrochemical results. Structural Chemistry, 1990, 1, 441-454.	2.0	10
213	Electrochemistry of the two-dimensional heteronuclear [Fe3Pt3(CO)15] n clusters (n=2-, 1-, 0): MO treatment of the skeletal adjustments in 86-84e ? congeners. Journal of Cluster Science, 1990, 1, 93-106.	3.3	15
214	Coadsorption of carbon monoxide and hydrogen on the nickel(100) surface: a theoretical investigation of site preferences and surface bonding. The Journal of Physical Chemistry, 1990, 94, 1554-1564.	2.9	25
215	MO theory made visible. Journal of Chemical Education, 1990, 67, 399.	2.3	828
216	Intermetal bonding network in two-dimensional tetranuclear clusters. Journal of the American Chemical Society, 1990, 112, 5484-5496.	13.7	40

#	Article	IF	CITATIONS
217	Migration of hydrogen from metal to alkene promoted by dioxygen addition. Oxygen atom transfer from a cis-(alkyl)(η2-dioxygen) complex of rhodium to organic and inorganic substrates. Journal of Organometallic Chemistry, 1989, 369, C6-C10.	1.8	19
218	Homo- and heterobimetallic trihydride complexes stabilized by the tripodal phosphine ligand MeC(CH2PPh2)3: experimental and theoretical studies. Inorganic Chemistry, 1989, 28, 2552-2560.	4.0	25
219	The electron-deficient planar tetrairon cluster octacarbonyltetrakis(pyridine)tetrairon. Inorganic Chemistry, 1989, 28, 1122-1127.	4.0	16
220	Stabilisation of trivalent nickel through 1 : 2 co-ordination by cyclic terdentate ligands CH2CH2NH(CH2)2NH(CH2)2X (X = NH, O, or S). Journal of the Chemical Society Dalton Transactions, 1989, , 229.	1.1	13
221	Aromaticity and Agostic Interactions as Stabilizing Factors in Trinuclear Rhenium Clusters with Low Electron Count. Comments on Inorganic Chemistry, 1989, 9, 37-59.	5.2	12
222	Networks, Topologies, and Entanglements. , 0, , 58-85.		6
223	Design of MOFs with Absolute Structures: A Case Study. Israel Journal of Chemistry, 0, , .	2.3	5
224	Visualization and Quantification of Geometric Diversity in Metal–Organic Frameworks. Chemistry of Materials, 0, , .	6.7	11