
Marina Papoutsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7646533/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imbalanced basal ganglia connectivity is associated with motor deficits and apathy in Huntington's disease. Brain, 2022, 145, 991-1000.	7.6	11
2	Timing of selective basal ganglia white matter loss in premanifest Huntington's disease. NeuroImage: Clinical, 2022, 33, 102927.	2.7	10
3	A biological classification of Huntington's disease: the Integrated Staging System. Lancet Neurology, The, 2022, 21, 632-644.	10.2	78
4	Neurofilament light-associated connectivity in young-adult Huntington's disease is related to neuronal genes. Brain, 2022, 145, 3953-3967.	7.6	3
5	Fronto-striatal circuits for cognitive flexibility in far from onset Huntington's disease: evidence from the Young Adult Study. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 143-149.	1.9	26
6	Diffusion imaging in Huntington's disease: comprehensive review. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 62-69.	1.9	22
7	Dynamics of Cortical Degeneration Over a Decade in Huntington's Disease. Biological Psychiatry, 2021, 89, 807-816.	1.3	32
8	Altered iron and myelin in premanifest Huntington's Disease more than 20 years before clinical onset: Evidence from the cross-sectional HD Young Adult Study. EBioMedicine, 2021, 65, 103266.	6.1	20
9	Tracking Huntington's Disease Progression Using Motor, Functional, Cognitive, and Imaging Markers. Movement Disorders, 2021, 36, 2282-2292.	3.9	10
10	Relating quantitative <scp>7T MRI</scp> across cortical depths to cytoarchitectonics, gene expression and connectomics. Human Brain Mapping, 2021, 42, 4996-5009.	3.6	17
11	Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis. NeuroImage, 2021, 237, 118207.	4.2	22
12	Aberrant Striatal Value Representation in Huntington's Disease Gene Carriers 25 Years Before Onset. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 910-918.	1.5	1
13	Revealing the Timeline of Structural MRI Changes in Premanifest to Manifest Huntington Disease. Neurology: Genetics, 2021, 7, e617.	1.9	20
14	Characterizing White Matter in Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 52-60.	1.5	20
15	Activity or connectivity? A randomized controlled feasibility study evaluating neurofeedback training in Huntington's disease. Brain Communications, 2020, 2, fcaa049.	3.3	10
16	9â€Aberrant striatal value representation in Huntington's disease gene carriers 25 years before onset. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, e4.1-e4.	1.9	0
17	Can we predict realâ€ŧime <scp>fMRI</scp> neurofeedback learning success from pretraining brain activity?. Human Brain Mapping, 2020, 41, 3839-3854.	3.6	27
18	Longitudinal Structural <scp>MRI</scp> in Neurologically Healthy Adults. Journal of Magnetic Resonance Imaging, 2020, 52, 1385-1399.	3.4	5

#	Article	IF	CITATIONS
19	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	10.2	122
20	The human motor cortex microcircuit: insights for neurodegenerative disease. Nature Reviews Neuroscience, 2020, 21, 401-415.	10.2	56
21	Association of CAG Repeats With Long-term Progression in Huntington Disease. JAMA Neurology, 2019, 76, 1375.	9.0	44
22	Endogenous fluctuations in the dopaminergic midbrain drive behavioral choice variability. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18732-18737.	7.1	37
23	Multimodal characterization of the visual network in Huntington's disease gene carriers. Clinical Neurophysiology, 2019, 130, 2053-2059.	1.5	0
24	Targeting Huntingtin Expression in Patients with Huntington's Disease. New England Journal of Medicine, 2019, 380, 2307-2316.	27.0	493
25	Huntingtin Lowering Strategies for Disease Modification in Huntington's Disease. Neuron, 2019, 101, 801-819.	8.1	202
26	Natural biological variation of white matter microstructure is accentuated in Huntington's disease. Human Brain Mapping, 2018, 39, 3516-3527.	3.6	19
27	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.1	65
28	Motor cortex synchronization influences the rhythm of motor performance in premanifest huntington's disease. Movement Disorders, 2018, 33, 440-448.	3.9	28
29	Stimulating neural plasticity with realâ€ŧime f <scp>MRI</scp> neurofeedback in <scp>H</scp> untington's disease: A proof of concept study. Human Brain Mapping, 2018, 39, 1339-1353.	3.6	33
30	Cross-sectional and longitudinal voxel-based grey matter asymmetries in Huntington's disease. NeuroImage: Clinical, 2018, 17, 312-324.	2.7	23
31	An imageâ€based model of brain volume biomarker changes in Huntington's disease. Annals of Clinical and Translational Neurology, 2018, 5, 570-582.	3.7	50
32	Brain Regions Showing White Matter Loss inÂHuntington's Disease Are Enriched for Synaptic and Metabolic Genes. Biological Psychiatry, 2018, 83, 456-465.	1.3	79
33	Working Memory-Related Effective Connectivity in Huntington's Disease Patients. Frontiers in Neurology, 2018, 9, 370.	2.4	12
34	Altered Intracortical T1-Weighted/T2-Weighted Ratio Signal in Huntington's Disease. Frontiers in Neuroscience, 2018, 12, 805.	2.8	17
35	Learning Subject-Specific Directed Acyclic Graphs With Mixed Effects Structural Equation Models From Observational Data. Frontiers in Genetics, 2018, 9, 430.	2.3	2
36	Testing a longitudinal compensation model in premanifest Huntington's disease. Brain, 2018, 141, 2156-2166.	7.6	33

#	Article	IF	CITATIONS
37	In vivo characterization of white matter pathology in premanifest huntington's disease. Annals of Neurology, 2018, 84, 497-504.	5.3	53
38	J12â€HD brain-train: enhancing neural plasticity using real-time FMRI neurofeedback training. , 2018, , .		1
39	White matter predicts functional connectivity in premanifest Huntington's disease. Annals of Clinical and Translational Neurology, 2017, 4, 106-118.	3.7	38
40	Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study. Lancet Neurology, The, 2017, 16, 701-711.	10.2	248
41	Operationalizing compensation over time in neurodegenerative disease. Brain, 2017, 140, 1158-1165.	7.6	62
42	Structural and functional brain network correlates of depressive symptoms in premanifest Huntington's disease. Human Brain Mapping, 2017, 38, 2819-2829.	3.6	28
43	Therapies targeting DNA and RNA in Huntington's disease. Lancet Neurology, The, 2017, 16, 837-847.	10.2	233
44	1609â€Length of white matter connexions determine their rate of atrophy in premanifest huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, A9.2-A9.	1.9	0
45	Structural imaging in premanifest and manifest Huntington disease. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2017, 144, 247-261.	1.8	18
46	Test–Retest Reliability of Measures Commonly Used to Measure Striatal Dysfunction across Multiple Testing Sessions: A Longitudinal Study. Frontiers in Psychology, 2017, 8, 2363.	2.1	16
47	Measuring compensation in neurodegeneration using MRI. Current Opinion in Neurology, 2017, 30, 380-387.	3.6	37
48	Topological length of white matter connections predicts their rate of atrophy in premanifest Huntington's disease. JCI Insight, 2017, 2, .	5.0	37
49	D20â€Operationalising compensation over time in neurodegenerative disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A41.2-A41.	1.9	0
50	D22â€Compensation in preclinical huntington's disease: evidence from the track-on HD study. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A42.2-A42.	1.9	0
51	A17â€HD brain-train: neuroplasticity as a target to improve function in huntington's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A5.3-A5.	1.9	12
52	Visuospatial Processing Deficits Linked to Posterior Brain Regions in Premanifest and Early Stage Huntington's Disease. Journal of the International Neuropsychological Society, 2016, 22, 595-608.	1.8	44
53	RNA-Seq of Huntington's disease patient myeloid cells reveals innate transcriptional dysregulation associated with proinflammatory pathway activation. Human Molecular Genetics, 2016, 25, ddw142.	2.9	47
54	Disruption of immune cell function by mutant huntingtin in Huntington's disease pathogenesis. Current Opinion in Pharmacology, 2016, 26, 33-38.	3.5	39

#	Article	IF	CITATIONS
55	Compensation in Preclinical Huntington's Disease: Evidence From the Track-On HD Study. EBioMedicine, 2015, 2, 1420-1429.	6.1	122
56	Neuropsychiatry and White Matter Microstructure in Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 239-249.	1.9	33
57	Detection of Motor Changes in Huntington's Disease Using Dynamic Causal Modeling. Frontiers in Human Neuroscience, 2015, 9, 634.	2.0	8
58	Basal ganglia ortical structural connectivity in Huntington's disease. Human Brain Mapping, 2015, 36, 1728-1740.	3.6	29
59	Huntington disease. Nature Reviews Disease Primers, 2015, 1, 15005.	30.5	1,031
60	Quantification of mutant huntingtin protein in cerebrospinal fluid from Huntington's disease patients. Journal of Clinical Investigation, 2015, 125, 1979-1986.	8.2	209
61	Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain, 2015, 138, 3327-3344.	7.6	96
62	Huntington disease: natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 2014, 10, 204-216.	10.1	873
63	The cognitive burden in Huntington's disease: Pathology, phenotype, and mechanisms of compensation. Movement Disorders, 2014, 29, 673-683.	3.9	116
64	Targets for future clinical trials in Huntington's disease: What's in the pipeline?. Movement Disorders, 2014, 29, 1434-1445.	3.9	116
65	White matter integrity in premanifest and early Huntington's disease is related to caudate loss and disease progression. Cortex, 2014, 52, 98-112.	2.4	57
66	Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study. NeuroImage: Clinical, 2013, 2, 204-211.	2.7	34
67	Interregional compensatory mechanisms of motor functioning in progressing preclinical neurodegeneration. Neurolmage, 2013, 75, 146-154.	4.2	30
68	Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurology, The, 2013, 12, 637-649.	10.2	704
69	Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. Brain, 2012, 135, 1165-1179.	7.6	85
70	Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurology, The, 2012, 11, 42-53.	10.2	479
71	Emotion recognition in Huntington's disease: A systematic review. Neuroscience and Biobehavioral Reviews, 2012, 36, 237-253.	6.1	101
72	Early changes in white matter pathways of the sensorimotor cortex in premanifest Huntington's disease. Human Brain Mapping, 2012, 33, 203-212.	3.6	127

#	Article	IF	CITATIONS
73	Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain, 2011, 134, 415-431.	7.6	207
74	Is left fronto-temporal connectivity essential for syntax? Effective connectivity, tractography and performance in left-hemisphere damaged patients. NeuroImage, 2011, 58, 656-664.	4.2	72
75	Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurology, The, 2011, 10, 83-98.	10.2	1,393
76	Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet Neurology, The, 2011, 10, 31-42.	10.2	530
77	Early atrophy of pallidum and accumbens nucleus in Huntington's disease. Journal of Neurology, 2011, 258, 412-420.	3.6	121
78	Irritability in pre-clinical Huntington's disease. Neuropsychologia, 2010, 48, 549-557.	1.6	68
79	The progression of regional atrophy in premanifest and early Huntington's disease: a longitudinal voxel-based morphometry study. Journal of Neurology, Neurosurgery and Psychiatry, 2010, 81, 756-763.	1.9	105
80	Functional compensation of motor function in pre-symptomatic Huntington's disease. Brain, 2009, 132, 1624-1632.	7.6	106
81	Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurology, The, 2009, 8, 791-801.	10.2	856
82	From Phonemes to Articulatory Codes: An fMRI Study of the Role of Broca's Area in Speech Production. Cerebral Cortex, 2009, 19, 2156-2165.	2.9	153
83	White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington's disease. Brain, 2008, 131, 196-204.	7.6	153