Qun-Dong Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7645071/publications.pdf

Version: 2024-02-01

90 papers

4,027 citations

33 h-index 61 g-index

91 all docs 91 docs citations

91 times ranked 5931 citing authors

#	Article	IF	Citations
1	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	21.0	421
2	PVDFâ€Based Ferroelectric Polymers in Modern Flexible Electronics. Advanced Electronic Materials, 2017, 3, 1600460.	5.1	321
3	Hypoxia and H ₂ O ₂ Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.	9.1	220
4	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. Advanced Materials, 2016, 28, 9573-9580.	21.0	182
5	3Dâ€Printed Soft Magnetoelectric Microswimmers for Delivery and Differentiation of Neuronâ€Like Cells. Advanced Functional Materials, 2020, 30, 1910323.	14.9	157
6	Enhancement of Electrical Properties of Ferroelectric Polymers by Polyaniline Nanofibers with Controllable Conductivities. Advanced Functional Materials, 2008, 18, 1299-1306.	14.9	139
7	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	13.8	124
8	Phase Transitions and Ferroelectric Relaxor Behavior in P(VDFâ^'TrFEâ^'CFE) Terpolymers. Macromolecules, 2007, 40, 2371-2379.	4.8	118
9	Conjugated Polymer Nanoparticles for Fluorescence Imaging and Sensing of Neurotransmitter Dopamine in Living Cells and the Brains of Zebrafish Larvae. ACS Applied Materials & mp; Interfaces, 2015, 7, 18581-18589.	8.0	109
10	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	10.3	104
11	High Dielectric Constant Composite of P(VDFâ^'TrFE) with Grafted Copper Phthalocyanine Oligomer. Macromolecules, 2004, 37, 2294-2298.	4.8	97
12	Conjugated polymer nanomaterials for theranostics. Acta Pharmacologica Sinica, 2017, 38, 764-781.	6.1	91
13	Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation. Materials Horizons, 2019, 6, 1512-1516.	12.2	88
14	Nanoâ€Imprinted Ferroelectric Polymer Nanodot Arrays for High Density Data Storage. Advanced Functional Materials, 2013, 23, 3124-3129.	14.9	82
15	Microstructure and Dielectric Properties of P(VDFâ^'TrFEâ^'CFE) with Partially Grafted Copper Phthalocyanine Oligomer. Macromolecules, 2005, 38, 2247-2252.	4.8	81
16	Conductive Hydrogel for a Photothermal-Responsive Stretchable Artificial Nerve and Coalescing with a Damaged Peripheral Nerve. ACS Nano, 2020, 14, 16565-16575.	14.6	77
17	Flexible Polymer Transducers for Dynamic Recognizing Physiological Signals. Advanced Functional Materials, 2016, 26, 3640-3648.	14.9	75
18	A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer, 2009, 50, 679-684.	3.8	69

#	Article	IF	CITATIONS
19	A polymer blend approach to tailor the ferroelectric responses in P(VDF–TrFE) based copolymers. Polymer, 2013, 54, 2373-2381.	3.8	69
20	ROSâ€Responsive Microneedle Patch for Acne Vulgaris Treatment. Advanced Therapeutics, 2018, 1, 1800035.	3.2	69
21	Greatly Enhanced Energy Density and Patterned Films Induced by Photo Crossâ€Linking of Poly(vinylidene fluorideâ€chlorotrifluoroethylene). Macromolecular Rapid Communications, 2011, 32, 94-99.	3.9	56
22	Anionic Water-Soluble Poly(phenylenevinylene) Alternating Copolymer:Â High-Efficiency Photoluminescence and Dual Electroluminescence. Macromolecules, 2006, 39, 3125-3131.	4.8	54
23	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	10.0	54
24	pH-Responsive and near-infrared-emissive polymer nanoparticles for simultaneous delivery, release, and fluorescence tracking of doxorubicin in vivo. Chemical Communications, 2014, 50, 4699.	4.1	50
25	Electromagnetizedâ€Nanoparticleâ€Modulated Neural Plasticity and Recovery of Degenerative Dopaminergic Neurons in the Midâ€Brain. Advanced Materials, 2020, 32, e2003800.	21.0	47
26	Aromatic poly(arylene ether urea) with high dipole moment for high thermal stability and high energy density capacitors. Applied Physics Letters, 2015, 106, .	3.3	46
27	Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends. Applied Physics Letters, 2012, 100, .	3.3	44
28	Conjugated Polymer Fluorescence Probe for Intracellular Imaging of Magnetic Nanoparticles. Macromolecules, 2010, 43, 10348-10354.	4.8	43
29	Combining fast-scan chip-calorimeter with molecular simulations to investigate superheating behaviors of lamellar polymer crystals. Polymer, 2014, 55, 4307-4312.	3.8	41
30	Layer-by-Layer Assembly of Conjugated Polyelectrolytes on Magnetic Nanoparticle Surfaces. Langmuir, 2009, 25, 5969-5973.	3.5	40
31	Dual electroluminescence from a single-component light-emitting electrochemical cell, based on water-soluble conjugated polymer. Journal of Applied Polymer Science, 2006, 100, 2930-2936.	2.6	37
32	Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer. Applied Physics Letters, 2015, 106, .	3.3	37
33	Low-temperature crystallization of P(VDF-TrFE-CFE) studied by Flash DSC. Polymer, 2016, 84, 319-327.	3.8	35
34	Oxidative stabilization of PAN/VGCF composite. Journal of Applied Polymer Science, 2003, 87, 2063-2073.	2.6	33
35	A nanocomposite approach to tailor electrocaloric effect inÂferroelectric polymer. Polymer, 2013, 54, 5299-5302.	3.8	33
36	Dual-Color Fluorescence Imaging of Magnetic Nanoparticles in Live Cancer Cells Using Conjugated Polymer Probes. Scientific Reports, 2016, 6, 22368.	3.3	33

#	Article	IF	CITATIONS
37	Lightâ€Induced ROS Generation and 2â€DGâ€Activated Endoplasmic Reticulum Stress by Antitumor Nanosystems: An Effective Combination Therapy by Regulating the Tumor Microenvironment. Small, 2019, 15, e1900212.	10.0	32
38	P(VDF-TrFE-CFE) terpolymer thin-film for high performance nonvolatile memory. Applied Physics Letters, 2013, 102, .	3.3	29
39	Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS Applied Materials & Drug Addiction. ACS Applied Materials & Drug Addiction. ACS	8.0	27
40	Poly($\hat{l}\mu$ -caprolactone) macroligands with \hat{l}^2 -diketonate binding sites: synthesis and coordination chemistry. Tetrahedron, 2004, 60, 7277-7285.	1.9	25
41	Ferroelectric Polymer Nanotubes with Large Dielectric Constants for Potential Allâ€Organic Electronic Devices. Macromolecular Rapid Communications, 2008, 29, 724-728.	3.9	25
42	Bioinspired Ferroelectric Polymer Arrays as Photodetectors with Signal Transmissible to Neuron Cells. Advanced Materials, 2016, 28, 10684-10691.	21.0	24
43	Self-folded redox/acid dual-responsive nanocarriers for anticancer drug delivery. Chemical Communications, 2014, 50, 15105-15108.	4.1	23
44	Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption. Nanoscale, 2014, 6, 13945-13951.	5.6	23
45	Crosslinked P(VDF-CTFE)/PS-COOH nanocomposites for high-energy-density capacitor application. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 1160-1169.	2.1	23
46	Hybrid nanocomposites of semiconductor nanoparticles and conjugated polyelectrolytes and their application as fluorescence biosensors. Polymer, 2010, 51, 902-907.	3.8	20
47	Combining TMDSC measurements between chip-calorimeter and molecular simulation to study reversible melting of polymer crystals. Thermochimica Acta, 2015, 603, 79-84.	2.7	20
48	Ferroelectric domain dynamics and stability in graphene oxide-P(VDF-TrFE) multilayer films for ultra-high-density memoryÂapplication. Carbon, 2019, 144, 15-23.	10.3	20
49	Synthesis and characterization of novel soluble alternating copoly(phenylene vinylene) derivative for light-emitting electrochemical cell. Journal of Applied Polymer Science, 2003, 88, 1350-1356.	2.6	19
50	A fluorescenceâ€"Raman dual-imaging platform based on complexes of conjugated polymers and carbon nanotubes. Nanoscale, 2014, 6, 1480-1489.	5.6	18
51	Primary and secondary crystallization of fast-cooled poly(vinylidene fluoride) studied by Flash DSC, wide-angle X-ray diffraction and Fourier transform infrared spectroscopy. Polymer International, 2016, 65, 387-392.	3.1	17
52	A type of poly(vinylidene fluoride-trifluoroethylene) copolymer exhibiting ferroelectric relaxor behavior at high temperature (â ¹ /4100°C). Applied Physics Letters, 2008, 92, 042903.	3.3	16
53	Smart conjugated polymer nanocarrier for healthy weight loss by negative feedback regulation of lipase activity. Nanoscale, 2016, 8, 3368-3375.	5.6	16
54	Ferroelectric nanocomposite networks with high energy storage capacitance and low ferroelectric loss by designing a hierarchical interface architecture. Physical Chemistry Chemical Physics, 2019, 21, 20661-20671.	2.8	16

#	Article	IF	CITATIONS
55	Composite of P(VDFâ€CTFE) and aromatic polythiourea for capacitors with highâ€capacity, highâ€efficiency, and fast response. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 193-199.	2.1	15
56	Ferroelectric polymer nanostructure with enhanced flexoelectric response for force-induced memory. Applied Physics Letters, 2018, 113, .	3.3	15
57	Influence of dc bias electric field on Vogel-Fulcher dynamics in relaxor ferroelectrics. Physical Review B, 2011, 83, .	3.2	14
58	In-depth understanding of interfacial crystallization <i>via</i> Flash DSC and enhanced energy storage density in ferroelectric P(VDF-CTFE)/Au NRs nanocomposites for capacitor application. Soft Matter, 2018, 14, 7714-7723.	2.7	14
59	BiFeO ₃ â€"BaTiO ₃ /P(VDF-TrFE) Multifunctional Polymer Nanocomposites. ACS Applied Electronic Materials, 2021, 3, 743-751.	4.3	14
60	Cooling rate controlled microstructure evolution through flash DSC and enhanced energy density in P(VDF–CTFE) for capacitor application. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1245-1253.	2.1	13
61	Skin-Inspired Pressure Sensor with MXene/P(VDF-TrFE-CFE) as Active Layer for Wearable Electronics. Nanomaterials, 2021, 11, 716.	4.1	13
62	Cationic fluorescent polymer core–shell nanoparticles for encapsulation, delivery, and non-invasively tracking the intracellular release of siRNA. Chemical Communications, 2015, 51, 2976-2979.	4.1	12
63	Folate-Modified Photoelectric Responsive Polymer Microarray as Bionic Artificial Retina to Restore Visual Function. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28759-28767.	8.0	12
64	Evolution of nanopolar phases, interfaces, and increased dielectric energy storage capacity in photoinitiated cross-linked poly(vinylidene fluoride)-based copolymers. Colloid and Polymer Science, 2013, 291, 1989-1997.	2.1	11
65	High-resolution structural mapping and single-domain switching kinetics in 2D-confined ferroelectric nanodots for low-power FeRAM. Nanoscale, 2020, 12, 11997-12006.	5.6	11
66	Spatial- and Time-Resolved Mapping of Interfacial Polarization and Polar Nanoregions at Nanoscale in High-Energy-Density Ferroelectric Nanocomposites. ACS Applied Energy Materials, 2020, 3, 3665-3672.	5.1	11
67	Contributions of distinctive dynamic processes to dielectric response of a relaxorlike reduced poly(vinylidene fluoride-trifluoroethylene) copolymer. Physical Review B, 2010, 81, .	3.2	10
68	Study of polyfunctional carboxyl telechelic microspheres. Journal of Applied Polymer Science, 1999, 72, 667-676.	2.6	8
69	Cationic waterâ€soluble poly(<i>p</i> pi>â€phenylene vinylene) for fluorescence sensors and electrostatic selfâ€assembly nanocomposites with quantum dots. Journal of Applied Polymer Science, 2008, 110, 3225-3233.	2.6	8
70	Interactions between cationic conjugated polyelectrolyte and DNA and a labelâ€free method for DNA detection based on conjugated polyelectrolyte complexes. Journal of Applied Polymer Science, 2009, 114, 1278-1286.	2.6	8
71	Regulation of energy storage capacitance and efficiency in semi-crystalline vinylidene fluoride copolymers through cross-linking method. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 682-688.	2.9	8
72	Defect-mediated polarization switching in ferroelectric films for low-power-consuming and ultra-high-density memories. Polymer, 2018, 143, 281-288.	3.8	8

#	Article	IF	CITATIONS
73	Multicolour fluorescence cell imaging based on conjugated polymers. RSC Advances, 2014, 4, 3924-3928.	3.6	7
74	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	21.0	6
75	All-organic composites with strong photoelectric response over a wide spectral range. Science China Materials, 2021, 64, 1197-1205.	6.3	6
76	Microstructure of N-Picolylpolyurethane Transition Metal Complexes. Macromolecules, 1999, 32, 5878-5883.	4.8	5
77	Preparation, Structure and Properties of Fluorine-containing Polymers. , 2018, , 59-102.		5
78	Transition metal complexes of N-picolyl polyurethane. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 1539-1546.	2.1	4
79	Non-Interventional and High-Precision Temperature Measurement Biochips for Long-Term Monitoring the Temperature Fluctuations of Individual Cells. Biosensors, 2021, 11, 454.	4.7	4
80	Synthesis and electrochemical properties of redox active polyurethanes with ferrocene units in polyether soft segments. Journal of Applied Polymer Science, 1999, 74, 2674-2680.	2.6	3
81	Dielectric Investigations of Relaxor Reduced Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer in DC Bias Electric Field. Ferroelectrics, 2012, 427, 157-162.	0.6	3
82	All-organic flexible logical computing system based on electrical polarization of ferroelectric polymers. Applied Physics Letters, 2020, 116, .	3.3	3
83	Glassy Dielectric Processes in Reduced Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer System. Ferroelectrics, 2011, 419, 59-65.	0.6	2
84	Enhanced Electrocaloric Effect in Poly(vinylidene fluoride-trifluoroethylene)-based Composites. Materials Research Society Symposia Proceedings, 2013, 1490, 235-240.	0.1	2
85	Synthesis and electrochemical characterization of polyurethane with fixed redox-active units in hard segments. Journal of Applied Polymer Science, 2003, 87, 1555-1561.	2.6	1
86	Crystallisation behaviours of ferroelectric P(VDF-TrFE) ultrathin films on different substrates. Materials Research Innovations, 2015, 19, S240-S245.	2.3	1
87	Poly(É)-caprolactone) Macroligands with \hat{l}^2 -Diketonate Binding Sites: Synthesis and Coordination Chemistry Chemlnform, 2004, 35, no.	0.0	0
88	PVDF-based copolymers & terpolymers from P(VDF-CTFE) 91/9 mol%., 2008,,.		0
89	Health Monitoring: Flexible Polymer Transducers for Dynamic Recognizing Physiological Signals (Adv.) Tj ETQq1	1 0,78431 14.9	4 rgBT /Over
90	Study of polyfunctional carboxyl telechelic microspheres. Journal of Applied Polymer Science, 1999, 72, 667-676.	2.6	0