Brandon M Turner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7644183/publications.pdf Version: 2024-02-01

REANDON M THENER

#	Article	IF	CITATIONS
1	A method for efficiently sampling from distributions with correlated dimensions Psychological Methods, 2013, 18, 368-384.	3.5	191
2	A tutorial on approximate Bayesian computation. Journal of Mathematical Psychology, 2012, 56, 69-85.	1.8	188
3	When the Brain Takes a Break: A Model-Based Analysis of Mind Wandering. Journal of Neuroscience, 2014, 34, 16286-16295.	3.6	159
4	A Bayesian framework for simultaneously modeling neural and behavioral data. NeuroImage, 2013, 72, 193-206.	4.2	148
5	Cognitive and Neural Bases of Multi-Attribute, Multi-Alternative, Value-based Decisions. Trends in Cognitive Sciences, 2019, 23, 251-263.	7.8	144
6	Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology, 2017, 76, 65-79.	1.8	128
7	Informing cognitive abstractions through neuroimaging: The neural drift diffusion model Psychological Review, 2015, 122, 312-336.	3.8	127
8	A generalized, likelihood-free method for posterior estimation. Psychonomic Bulletin and Review, 2014, 21, 227-250.	2.8	96
9	Why more is better: Simultaneous modeling of EEC, fMRI, and behavioral data. NeuroImage, 2016, 128, 96-115.	4.2	81
10	Competing theories of multialternative, multiattribute preferential choice Psychological Review, 2018, 125, 329-362.	3.8	71
11	Approximate Bayesian computation with differential evolution. Journal of Mathematical Psychology, 2012, 56, 375-385.	1.8	68
12	Intertemporal Choice as Discounted Value Accumulation. PLoS ONE, 2014, 9, e90138.	2.5	62
13	Model-based cognitive neuroscience. Journal of Mathematical Psychology, 2017, 76, 59-64.	1.8	50
14	Parameter recovery for the Leaky Competing Accumulator model. Journal of Mathematical Psychology, 2017, 76, 25-50.	1.8	48
15	The neural basis of value accumulation in intertemporal choice. European Journal of Neuroscience, 2015, 42, 2179-2189.	2.6	47
16	A dynamic stimulus-driven model of signal detection Psychological Review, 2011, 118, 583-613.	3.8	46
17	Hierarchical Approximate Bayesian Computation. Psychometrika, 2014, 79, 185-209.	2.1	46
18	Some task demands induce collapsing bounds: Evidence from a behavioral analysis. Psychonomic Bulletin and Review, 2018, 25, 1225-1248.	2.8	46

BRANDON M TURNER

#	Article	IF	CITATIONS
19	A tutorial on joint models of neural and behavioral measures of cognition. Journal of Mathematical Psychology, 2018, 84, 20-48.	1.8	43
20	On the Neural and Mechanistic Bases of Self-Control. Cerebral Cortex, 2019, 29, 732-750.	2.9	41
21	Factor analysis linking functions for simultaneously modeling neural and behavioral data. Neurolmage, 2017, 153, 28-48.	4.2	35
22	Evaluation of Physicians' Cognitive Styles. Medical Decision Making, 2014, 34, 627-637.	2.4	32
23	Likelihood-free Bayesian analysis of memory models Psychological Review, 2013, 120, 667-678.	3.8	31
24	The anchor integration model: A descriptive model of anchoring effects. Cognitive Psychology, 2016, 90, 1-47.	2.2	30
25	Bayesian analysis of simulation-based models. Journal of Mathematical Psychology, 2016, 72, 191-199.	1.8	28
26	Likelihood-Free Methods for Cognitive Science. Computational Approaches To Cognition and Perception, 2018, , .	0.6	28
27	Advances in techniques for imposing reciprocity in brain-behavior relations. Neuroscience and Biobehavioral Reviews, 2019, 102, 327-336.	6.1	25
28	Approximating Bayesian Inference through Model Simulation. Trends in Cognitive Sciences, 2018, 22, 826-840.	7.8	23
29	Joint Models of Neural and Behavioral Data. Computational Approaches To Cognition and Perception, 2019, , .	0.6	19
30	Gaussian process linking functions for mind, brain, and behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29398-29406.	7.1	18
31	Testing the factor structure underlying behavior using joint cognitive models: Impulsivity in delay discounting and Cambridge gambling tasks Psychological Methods, 2021, 26, 18-37.	3.5	17
32	Toward a common representational framework for adaptation Psychological Review, 2019, 126, 660-692.	3.8	15
33	Predicting Task and Subject Differences with Functional Connectivity and Blood-Oxygen-Level-Dependent Variability. Brain Connectivity, 2019, 9, 451-463.	1.7	14
34	What's in a response time?: On the importance of response time measures in constraining models of context effects Decision, 2019, 6, 171-200.	0.5	14
35	The dynamics of multimodal integration: The averaging diffusion model. Psychonomic Bulletin and Review, 2017, 24, 1819-1843.	2.8	11
36	Hierarchical Bayesian Analyses for Modeling BOLD Time Series Data. Computational Brain & Behavior, 2018, 1, 184-213.	1.7	11

BRANDON M TURNER

#	Article	IF	CITATIONS
37	The Importance of Standards for Sharing of Computational Models and Data. Computational Brain & Behavior, 2019, 2, 229-232.	1.7	9
38	Individual Differences in the Neural Dynamics of Response Inhibition. Journal of Cognitive Neuroscience, 2019, 31, 1976-1996.	2.3	8
39	Anxiety Modulates Preference for Immediate Rewards Among Trait-Impulsive Individuals: A Hierarchical Bayesian Analysis. Clinical Psychological Science, 2020, 8, 1017-1036.	4.0	8
40	Outlook on deep neural networks in computational cognitive neuroscience. NeuroImage, 2018, 180, 117-118.	4.2	6
41	Hierarchies improve individual assessment of temporal discounting behavior Decision, 2020, 7, 212-224.	0.5	6
42	Variational Bayesian methods for cognitive science Psychological Methods, 2020, 25, 535-559.	3.5	6
43	Reconciling similarity across models of continuous selections Psychological Review, 2021, 128, 766-786.	3.8	5
44	A regularization method for linking brain and behavior Psychological Methods, 2022, 27, 400-425.	3.5	4
45	Constraining Functional Coactivation with a Cluster-based Structural Connectivity Network. Network Neuroscience, 0, , 1-55.	2.6	4
46	A Tutorial on Joint Modeling. Computational Approaches To Cognition and Perception, 2019, , 13-37.	0.6	3
47	As within, so without, as above, so below: Common mechanisms can support between- and within-trial category learning dynamics Psychological Review, 2022, 129, 1104-1143.	3.8	3
48	Real-time Adaptive Design Optimization Within Functional MRI Experiments. Computational Brain & Behavior, 2020, 3, 400-429.	1.7	2
49	Extensions of Multivariate Dynamical Systems to Simultaneously Explain Neural and Behavioral Data. Computational Brain & Behavior, 2020, 3, 430-457.	1.7	1
50	Quantifying mechanisms of cognition with an experiment and modeling ecosystem. Behavior Research Methods, 2021, 53, 1833-1856.	4.0	1
51	Other Approaches. Computational Approaches To Cognition and Perception, 2019, , 85-96.	0.6	0
52	A Tutorial. Computational Approaches To Cognition and Perception, 2018, , 55-79.	0.6	0
53	Bayesian statistics to test Bayes optimality. Behavioral and Brain Sciences, 2018, 41, e246.	0.7	0
54	Validations. Computational Approaches To Cognition and Perception, 2018, , 81-93.	0.6	0