Maryna I Bodnarchuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764412/publications.pdf

Version: 2024-02-01

106 papers 21,468 citations

51 h-index 91 g-index

110 all docs

110 docs citations

110 times ranked

17292 citing authors

#	Article	IF	Citations
1	Size Segregation and Atomic Structural Coherence in Spontaneous Assemblies of Colloidal Cesium Lead Halide Nanocrystals. Chemistry of Materials, 2022, 34, 594-608.	3.2	14
2	Amphiphilic Polymer Coâ€Network: A Versatile Matrix for Tailoring the Photonic Energy Transfer in Wearable Energy Harvesting Devices. Advanced Energy Materials, 2022, 12, .	10.2	10
3	Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes. ACS Nano, 2022, 16, 7210-7232.	7.3	18
4	Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nature Communications, 2022, 13, 2074.	5.8	89
5	Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. Nano Letters, 2022, 22, 3751-3760.	4.5	34
6	Flexible, Free-Standing Polymer Membranes Sensitized by CsPbX3 Nanocrystals as Gain Media for Low Threshold, Multicolor Light Amplification. ACS Photonics, 2022, 9, 2385-2397.	3.2	7
7	Radiative lifetime-encoded unicolour security tags using perovskite nanocrystals. Nature Communications, 2021, 12, 981.	5.8	67
8	Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 2021, 593, 535-542.	13.7	152
9	Surface Functionalization of CsPbBr ₃ lanocrystals for Photonic Applications. ACS Applied Nano Materials, 2021, 4, 5084-5097.	2.4	14
10	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
11	Enhanced Reducibility of the Ceria–Tin Oxide Solid Solution Modifies the CO Oxidation Mechanism at the Platinum–Oxide Interface. ACS Catalysis, 2021, 11, 9435-9449.	5.5	19
12	Efficient Amplified Spontaneous Emission from Solution-Processed CsPbBr ₃ Nanocrystal Microcavities under Continuous Wave Excitation. ACS Photonics, 2021, 8, 2120-2129.	3.2	21
13	Shape-Directed Co-Assembly of Lead Halide Perovskite Nanocubes with Dielectric Nanodisks into Binary Nanocrystal Superlattices. ACS Nano, 2021, 15, 16488-16500.	7.3	25
14	All-Optical Coherent Lifting of Spin-Degeneracy in CsPbBr3 Nanocrystals. , 2021, , .		0
15	Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr ₃ Nanocrystals and Their Superfluorescent Assemblies. ACS Central Science, 2021, 7, 135-144.	5.3	75
16	Unraveling the shell growth pathways of Pd-Pt core-shell nanocubes at atomic level by in situ liquid cell electron microscopy. Applied Physics Reviews, 2021, 8, 041407.	5.5	4
17	Highly Concentrated, Zwitterionic Ligand-Capped Mn ²⁺ :CsPb(Br _{<i>x</i>} Cl _{1â€"<i>x</i>}) ₃ Nanocrystals as Bright Scintillators for Fast Neutron Imaging. ACS Energy Letters, 2021, 6, 4365-4373.	8.8	30
18	Polaron and Spin Dynamics in Organic–Inorganic Lead Halide Perovskite Nanocrystals. Advanced Optical Materials, 2020, 8, 2001016.	3.6	23

#	Article	lF	Citations
19	The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nature Communications, 2020, 11 , 6001 .	5.8	67
20	Unraveling the Origin of the Long Fluorescence Decay Component of Cesium Lead Halide Perovskite Nanocrystals. ACS Nano, 2020, 14, 14939-14946.	7.3	22
21	Kinetic modelling of intraband carrier relaxation in bulk and nanocrystalline lead-halide perovskites. Physical Chemistry Chemical Physics, 2020, 22, 17605-17611.	1.3	5
22	Fast Neutron Imaging with Semiconductor Nanocrystal Scintillators. ACS Nano, 2020, 14, 14686-14697.	7.3	34
23	Hot Carrier Dynamics in Perovskite Nanocrystal Solids: Role of the Cold Carriers, Nanoconfinement, and the Surface. Nano Letters, 2020, 20, 2271-2278.	4.5	40
24	InGaN Nanohole Arrays Coated by Lead Halide Perovskite Nanocrystals for Solid-State Lighting. ACS Applied Nano Materials, 2020, 3, 2167-2175.	2.4	9
25	Colloidal Antimony Sulfide Nanoparticles as a High-Performance Anode Material for Li-ion and Na-ion Batteries. Scientific Reports, 2020, 10, 2554.	1.6	23
26	High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nature Materials, 2019, 18, 846-852.	13.3	246
27	Energy Transfer from Perovskite Nanocrystals to Dye Molecules Does Not Occur by FRET. Nano Letters, 2019, 19, 8896-8902.	4.5	21
28	Direct Synthesis of Quaternary Alkylammonium-Capped Perovskite Nanocrystals for Efficient Blue and Green Light-Emitting Diodes. ACS Energy Letters, 2019, 4, 2703-2711.	8.8	161
29	Anatase TiO ₂ Nanorods as Cathode Materials for Aluminum-Ion Batteries. ACS Applied Nano Materials, 2019, 2, 6428-6435.	2.4	40
30	Underestimated Effect of a Polymer Matrix on the Light Emission of Single CsPbBr ₃ Nanocrystals. Nano Letters, 2019, 19, 3648-3653.	4.5	88
31	Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Scientific Reports, 2019, 9, 7988.	1.6	64
32	Unraveling the Radiative Pathways of Hot Carriers upon Intense Photoexcitation of Lead Halide Perovskite Nanocrystals. ACS Nano, 2019, 13, 5799-5809.	7.3	15
33	The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nature Materials, 2019, 18, 717-724.	13.3	189
34	Superfluorescence from Nanocrystal Superlattices. Chimia, 2019, 73, 92.	0.3	1
35	Overcoming the High-Voltage Limitations of Li-Ion Batteries Using a Titanium Nitride Current Collector. ACS Applied Energy Materials, 2019, 2, 974-978.	2.5	17
36	Robust Hydrophobic and Hydrophilic Polymer Fibers Sensitized by Inorganic and Hybrid Lead Halide Perovskite Nanocrystal Emitters. Frontiers in Chemistry, 2019, 7, 87.	1.8	21

#	Article	IF	Citations
37	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae. Journal of Physical Chemistry Letters, 2019, 10, 1055-1062.	2.1	14
38	Stable Ultraconcentrated and Ultradilute Colloids of CsPbX $<$ sub $>3<$ sub $>$ (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand. Journal of the American Chemical Society, 2019, 141, 19839-19849.	6.6	141
39	Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals. ACS Energy Letters, 2019, 4, 63-74.	8.8	308
40	Aluminum Chlorideâ€Graphite Batteries with Flexible Current Collectors Prepared from Earthâ€Abundant Elements. Advanced Science, 2018, 5, 1700712.	5 . 6	77
41	Efficient Optical Amplification in the Nanosecond Regime from Formamidinium Lead Iodide Nanocrystals. ACS Photonics, 2018, 5, 907-917.	3.2	30
42	NaFeF ₃ Nanoplates as Low-Cost Sodium and Lithium Cathode Materials for Stationary Energy Storage. Chemistry of Materials, 2018, 30, 1825-1829.	3.2	36
43	Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563, 671-675.	13.7	416
44	Exploration of Near-Infrared-Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform. ACS Nano, 2018, 12, 5504-5517.	7.3	138
45	Unraveling exciton–phonon coupling in individual FAPbl3 nanocrystals emitting near-infrared single photons. Nature Communications, 2018, 9, 3318.	5.8	117
46	Colloidal Bismuth Nanocrystals as a Model Anode Material for Rechargeable Mg-Ion Batteries: Atomistic and Mesoscale Insights. ACS Nano, 2018, 12, 8297-8307.	7.3	61
47	Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots. Nano Letters, 2018, 18, 4440-4446.	4.5	57
48	Dismantling the "Red Wall―of Colloidal Perovskites: Highly Luminescent Formamidinium and Formamidinium–Cesium Lead Iodide Nanocrystals. ACS Nano, 2017, 11, 3119-3134.	7.3	414
49	Nanocrystalline FeF ₃ and MF ₂ (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. Journal of Materials Chemistry A, 2017, 5, 7383-7393.	5.2	59
50	Surface-Engineered Cationic Nanocrystals Stable in Biological Buffers and High Ionic Strength Solutions. Chemistry of Materials, 2017, 29, 9416-9428.	3.2	31
51	Polarized emission in Il–VI and perovskite colloidal quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 214001.	0.6	4
52	Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance. ACS Energy Letters, 2017, 2, 2071-2083.	8.8	888
53	Spontaneous emission enhancement of colloidal perovskite nanocrystals by a photonic crystal cavity. Applied Physics Letters, 2017, 111, .	1.5	14
54	Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 2017, 358, 745-750.	6.0	1,755

#	Article	IF	Citations
55	Rashba Effect in a Single Colloidal CsPbBr ₃ Perovskite Nanocrystal Detected by Magneto-Optical Measurements. Nano Letters, 2017, 17, 5020-5026.	4.5	180
56	Lead Halide Perovskite Nanocrystals: From Discovery to Self-assembly and Applications. Chimia, 2017, 71, 461.	0.3	62
57	Purcell enhanced Spontaneous Emission of Colloidal Perovskite Nanocrystals., 2017,,.		0
58	Airâ€Stable, Near―to Midâ€Infrared Emitting Solids of PbTe/CdTe Core–Shell Colloidal quantum dots. ChemPhysChem, 2016, 17, 670-674.	1.0	15
59	Monodisperse Formamidinium Lead Bromide Nanocrystals with Bright and Stable Green Photoluminescence. Journal of the American Chemical Society, 2016, 138, 14202-14205.	6.6	385
60	Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single-Photon Emission, Reduced Blinking, and Exciton Fine Structure. ACS Nano, 2016, 10, 2485-2490.	7.3	299
61	Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals. Nature Communications, 2015, 6, 10142.	5.8	20
62	Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries. Chimia, 2015, 69, 724.	0.3	38
63	Nanocrystals of Cesium Lead Halide Perovskites (CsPbX $<$ sub $>$ 3 $<$ /sub $>$, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015, 15, 3692-3696.	4.5	6,814
64	Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX $<$ sub $>$ 3 $<$ /sub $>$, X = Cl, Br, I). Nano Letters, 2015, 15, 5635-5640.	4.5	1,938
65	Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015, 6, 8056.	5.8	1,278
66	Colloidal BiF ₃ nanocrystals: a bottom-up approach to conversion-type Li-ion cathodes. Nanoscale, 2015, 7, 16601-16605.	2.8	21
67	High Infrared Photoconductivity in Films of Arsenic-Sulfide-Encapsulated Lead-Sulfide Nanocrystals. ACS Nano, 2014, 8, 12883-12894.	7.3	62
68	Colloidal Tin–Germanium Nanorods and Their Li-Ion Storage Properties. ACS Nano, 2014, 8, 2360-2368.	7.3	66
69	Precisely Engineered Colloidal Nanoparticles and Nanocrystals for Li-Ion and Na-Ion Batteries: Model Systems or Practical Solutions?. Chemistry of Materials, 2014, 26, 5422-5432.	3.2	69
70	Lead Halide Perovskites and Other Metal Halide Complexes As Inorganic Capping Ligands for Colloidal Nanocrystals. Journal of the American Chemical Society, 2014, 136, 6550-6553.	6.6	241
71	Monodisperse and Inorganically Capped Sn and Sn/SnO ₂ Nanocrystals for High-Performance Li-lon Battery Anodes. Journal of the American Chemical Society, 2013, 135, 4199-4202.	6.6	346
72	Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange. Nano Letters, 2013, 13, 586-593.	4.5	91

#	Article	lF	Citations
73	Binary Superlattices from Colloidal Nanocrystals and Giant Polyoxometalate Clusters. Nano Letters, 2013, 13, 1699-1705.	4.5	46
74	Engineering colloidal quantum dots. , 2013, , 1-29.		2
75	Carbon nanotube growth from Langmuir–Blodgett deposited Fe3O4nanocrystals. Nanotechnology, 2012, 23, 405604.	1.3	6
76	Three-Dimensional Nanocrystal Superlattices Grown in Nanoliter Microfluidic Plugs. Journal of the American Chemical Society, 2011, 133, 8956-8960.	6.6	66
77	Evaluation of Ordering in Single-Component and Binary Nanocrystal Superlattices by Analysis of Their Autocorrelation Functions. ACS Nano, 2011, 5, 1703-1712.	7.3	30
78	Structural Defects in Periodic and Quasicrystalline Binary Nanocrystal Superlattices. Journal of the American Chemical Society, 2011, 133, 20837-20849.	6.6	53
79	Expanding the Chemical Versatility of Colloidal Nanocrystals Capped with Molecular Metal Chalcogenide Ligands. Journal of the American Chemical Society, 2010, 132, 10085-10092.	6.6	263
80	Damascene Process for Controlled Positioning of Magnetic Colloidal Nanocrystals. Advanced Materials, 2010, 22, 1364-1368.	11.1	8
81	Energetic and Entropic Contributions to Self-Assembly of Binary Nanocrystal Superlattices: Temperature as the Structure-Directing Factor. Journal of the American Chemical Society, 2010, 132, 11967-11977.	6.6	210
82	Large-Area Ordered Superlattices from Magnetic Wýstite/Cobalt Ferrite Core/Shell Nanocrystals by Doctor Blade Casting. ACS Nano, 2010, 4, 423-431.	7.3	83
83	"Magnet-in-the-Semiconductor―FePtâ`'PbS and FePtâ`'PbSe Nanostructures: Magnetic Properties, Charge Transport, and Magnetoresistance. Journal of the American Chemical Society, 2010, 132, 6382-6391.	6.6	80
84	Size-Dependent Multiple Twinning in Nanocrystal Superlattices. Journal of the American Chemical Society, 2010, 132, 289-296.	6.6	134
85	Nanocrystal Superlattices with Thermally Degradable Hybrid Inorganicâ^'Organic Capping Ligands. Journal of the American Chemical Society, 2010, 132, 15124-15126.	6.6	75
86	Langmuirâ [^] Schaefer Deposition of Quantum Dot Multilayers. Langmuir, 2010, 26, 7732-7736.	1.6	54
87	Exchangeâ€Coupled Bimagnetic Wüstite/Metal Ferrite Core/Shell Nanocrystals: Size, Shape, and Compositional Control. Small, 2009, 5, 2247-2252.	5.2	78
88	Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature, 2009, 461, 964-967.	13.7	551
89	Quasiâ€Seeded Growth of Ligandâ€Tailored PbSe Nanocrystals through Cationâ€Exchangeâ€Mediated Nucleation. Angewandte Chemie - International Edition, 2008, 47, 3029-3033.	7.2	103
90	Gold/Iron Oxide Core/Hollow‧hell Nanoparticles. Advanced Materials, 2008, 20, 4323-4329.	11.1	308

#	Article	IF	CITATIONS
91	Fatty Acid Salts as Stabilizers in Size- and Shape-Controlled Nanocrystal Synthesis:  The Case of Inverse Spinel Iron Oxide. Journal of the American Chemical Society, 2007, 129, 6352-6353.	6.6	380
92	Spectral, Optical, and Photocatalytic Characteristics of Quantum-Sized Particles of CdTe. Theoretical and Experimental Chemistry, 2004, 40, 220-225.	0.2	14
93	Photoinduced Electron Transfer between CdS and CdTe Nanoparticles in Colloidal Solutions. Theoretical and Experimental Chemistry, 2004, 40, 287-292.	0.2	9
94	Perovskite-type nanocrystal superlattices from lead halide perovskite nanocubes., 0,,.		0
95	Exciton gating and triplet deshelving in single dye molecules excited by perovskite nanocrystal FRET antennae., 0,,.		0
96	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
97	Trap-states in monodisperse formamidinium tin iodide nanocrystals. , 0, , .		0
98	Continuous Wave Excitation of Amplified Spontaneous Emission in Solution-Processed Perovskite Nanocrystal Microcavities. , 0, , .		0
99	Highly luminescent lead halide perovskite nanocrystals: from synthesis advancements to multicomponent superlattices. , 0, , .		0
100	Lattice Softening Effects in Perovskite Nanocrystals: a Strategy for Lifetime-Encoded Unicolour Security Tags., 0, , .		0
101	Bright Triplet Emission from Lead Halide Perovskite Nanocrystals. , 0, , .		0
102	Exciton Gating and Triplet Deshelving in Single Dye Molecules Excited by Perovskite Nanocrystal FRET Antennae., 0,,.		0
103	Stimulated Emission in Formamidinium Lead Iodide Perovskite Nanocrystals., 0, , .		0
104	Structural Diversity in Multicomponent Nanocrystal Superlattices Comprising Lead Halide Perovskite Nanocubes. , 0, , .		0
105	Characterizing Structure, Microstructure, Morphology and Self-Assembly of LHP nanocrystals through Reciprocal Space Total Scattering Methods. , 0, , .		0
106	Hot Carrier Cooling Dynamics in Lead Halide Perovskite Nanomaterials. , 0, , .		0