Li-Ping Mo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643987/publications.pdf

Version: 2024-02-01

361413 526287 2,455 27 20 27 h-index citations g-index papers 36 36 36 2251 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Advances, 2015, 5, 48675-48704.	3. 6	497
2	Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 27-37.	5.9	210
3	Catalyst-free synthesis of quinazoline derivatives using low melting sugar–urea–salt mixture as a solvent. Green Chemistry, 2012, 14, 1502.	9.0	169
4	Meglumine promoted one-pot, four-component synthesis of pyranopyrazole derivatives. Tetrahedron, 2013, 69, 9931-9938.	1.9	156
5	Meglumine: A Novel and Efficient Catalyst for One-Pot, Three-Component Combinatorial Synthesis of Functionalized 2-Amino-4 <i>H</i> -pyrans. ACS Combinatorial Science, 2013, 15, 557-563.	3.8	147
6	Cerium Ammonium Nitrate-Catalyzed Multicomponent Reaction for Efficient Synthesis of Functionalized Tetrahydropyridines. ACS Combinatorial Science, 2011, 13, 181-185.	3.8	140
7	Sulfonic acid supported on hydroxyapatite-encapsulated-Î ³ -Fe2O3 nanocrystallites as a magnetically separable catalyst for one-pot reductive amination of carbonyl compounds. Green Chemistry, 2011, 13, 2576.	9.0	136
8	Superparamagnetic CuFeO ₂ Nanoparticles in Deep Eutectic Solvent: an Efficient and Recyclable Catalytic System for the Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines. ChemCatChem, 2014, 6, 2854-2859.	3.7	109
9	A recyclable magnetic nanoparticles supported antimony catalyst for the synthesis of N-substituted pyrroles in water. Applied Catalysis A: General, 2013, 457, 34-41.	4.3	99
10	One-Pot, Three-Component Synthesis of a Library of Spirooxindole-Pyrimidines Catalyzed by Magnetic Nanoparticle Supported Dodecyl Benzenesulfonic Acid in Aqueous Media. ACS Combinatorial Science, 2012, 14, 335-341.	3.8	93
11	Magnetic Nanoparticles (CoFe ₂ O ₄)â€Supported Phosphomolybdate as an Efficient, Green, Recyclable Catalyst for Synthesis of βâ€Hydroxy Hydroperoxides. Advanced Synthesis and Catalysis, 2013, 355, 2952-2959.	4.3	87
12	One-pot four-component synthesis of highly substituted pyrroles inÂgluconic acid aqueous solution. Tetrahedron, 2013, 69, 7011-7018.	1.9	86
13	A magnetic metal organic framework material as a highly efficient and recyclable catalyst for synthesis of cyclohexenone derivatives. Journal of Catalysis, 2020, 387, 39-46.	6.2	85
14	Meglumine catalyzed expeditious four-component domino protocol for synthesis of pyrazolopyranopyrimidines in aqueous medium. RSC Advances, 2014, 4, 51580-51588.	3.6	69
15	One-pot three-component synthesis of functionalized spirooxindoles in gluconic acid aqueous solution. Tetrahedron, 2013, 69, 2056-2061.	1.9	64
16	Nano CoFe ₂ O ₄ supported antimony(<scp>iii</scp>) as an efficient and recyclable catalyst for one-pot three-component synthesis of multisubstituted pyrroles. RSC Advances, 2014, 4, 12929-12943.	3.6	63
17	A magnetic metal–organic framework as a highly active heterogeneous catalyst for one-pot synthesis of 2-substituted alkyl and aryl(indolyl)kojic acid derivatives. New Journal of Chemistry, 2017, 41, 7108-7115.	2.8	54
18	One-pot three-component synthesis of 1,2,3-triazoles using magnetic NiFe ₂ O ₄ –glutamate–Cu as an efficient heterogeneous catalyst in water. RSC Advances, 2015, 5, 59167-59185.	3.6	49

#	Article	IF	CITATION
19	Oneâ∈Pot, Threeâ∈Component Condensation of Aldehydes, 2â∈Naphthol and 1,3â∈Dicarbonyl Compounds. Journal of the Chinese Chemical Society, 2010, 57, 157-161.	1.4	33
20	Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis. Current Organic Chemistry, 2011, 15, 3800-3823.	1.6	30
21	An Efficient Method for the Enamination of 1,3â€Dicarbonyl Compounds with Ceric Ammonium Nitrate (CAN). Journal of the Chinese Chemical Society, 2007, 54, 879-884.	1.4	17
22	Catalyst free one-pot synthesis of \hat{l}_{\pm} -aminophosphonates in aqueous ethyl lactate. Phosphorus, Sulfur and Silicon and the Related Elements, 2019, 194, 528-532.	1.6	16
23	Nickel supported on magnetic biochar as a highly efficient and recyclable heterogeneous catalyst for the oneâ€pot synthesis of spirooxindoleâ€dihydropyridines. Applied Organometallic Chemistry, 2022, 36, .	3.5	13
24	Palladium anchored on a covalent organic framework as a heterogeneous catalyst for phosphorylation of aryl bromides. Applied Organometallic Chemistry, 2022, 36, e6480.	3.5	12
25	Synthesis, characterization and application of magnetic biochar sulfonic acid as a highly efficient recyclable catalyst for preparation of spiro-pyrazolo[3,4-b]pyridines. Research on Chemical Intermediates, 2022, 48, 1249-1272.	2.7	11
26	A green approach for synthesis of naphthoquinone-fused oxazine derivatives in water under ultrasonic irradiation. Research on Chemical Intermediates, 2017, 43, 3745-3755.	2.7	8
27	A mild and practical procedure for synthesis of substituted 2-aminobenzophenones. Research on Chemical Intermediates, 2015, 41, 6433-6441.	2.7	2