Masamichi Shinoda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7643580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pannexin 1 role in the trigeminal ganglion in infraorbital nerve injuryâ€induced mechanical allodynia. Oral Diseases, 2023, 29, 1770-1781.	3.0	9
2	IL-33 induces orofacial neuropathic pain through Fyn-dependent phosphorylation of GluN2B in the trigeminal spinal subnucleus caudalis. Brain, Behavior, and Immunity, 2022, 99, 266-280.	4.1	10
3	Periodontal acidification contributes to tooth pain hypersensitivity during orthodontic tooth movement. Neuroscience Research, 2022, 177, 103-110.	1.9	6
4	Plastic changes in nociceptive pathways contributing to persistent orofacial pain. Journal of Oral Biosciences, 2022, 64, 263-270.	2.2	6
5	P2X3 receptor upregulation in trigeminal ganglion neurons through TNFα production in macrophages contributes to trigeminal neuropathic pain in rats. Journal of Headache and Pain, 2021, 22, 31.	6.0	12
6	Effect of lowâ€intensity pulsed ultrasound on orofacial sensory disturbance following inferior alveolar nerve injury: Role of neurotrophinâ€3 signaling. European Journal of Oral Sciences, 2021, 129, e12810.	1.5	3
7	Orofacial Neuropathic Pain-Basic Research and Their Clinical Relevancies. Frontiers in Molecular Neuroscience, 2021, 14, 691396.	2.9	13
8	Rapamycin Accelerates Axon Regeneration Through Schwann Cell-mediated Autophagy Following Inferior Alveolar Nerve Transection in Rats. Neuroscience, 2021, 468, 43-52.	2.3	5
9	Pannexin 1-Mediated ATP Signaling in the Trigeminal Spinal Subnucleus Caudalis Is Involved in Tongue Cancer Pain. International Journal of Molecular Sciences, 2021, 22, 11404.	4.1	5
10	Involvement of TNFα in the enhancement of hypersensitivity in the adulthood-injured face associated with facial injury in infancy. Neuroscience Research, 2020, 161, 18-23.	1.9	4
11	Microglia–Astrocyte Communication via C1q Contributes to Orofacial Neuropathic Pain Associated with Infraorbital Nerve Injury. International Journal of Molecular Sciences, 2020, 21, 6834.	4.1	25
12	Role of macrophage-mediated Toll-like receptor 4–interleukin-1R signaling in ectopic tongue pain associated with tooth pulp inflammation. Journal of Neuroinflammation, 2020, 17, 312.	7.2	11
13	Oxytocin-Dependent Regulation of TRPs Expression in Trigeminal Ganglion Neurons Attenuates Orofacial Neuropathic Pain following Infraorbital Nerve Injury in Rats. International Journal of Molecular Sciences, 2020, 21, 9173.	4.1	13
14	Aging-Related Phenotypic Conversion of Medullary Microglia Enhances Intraoral Incisional Pain Sensitivity. International Journal of Molecular Sciences, 2020, 21, 7871.	4.1	6
15	A perspective from experimental studies of burning mouth syndrome. Journal of Oral Science, 2020, 62, 165-169.	1.7	7
16	Pathophysiological mechanisms of persistent orofacial pain. Journal of Oral Science, 2020, 62, 131-135.	1.7	17
17	Involvement of Satellite Cell Activation via Nitric Oxide Signaling in Ectopic Orofacial Hypersensitivity. International Journal of Molecular Sciences, 2020, 21, 1252.	4.1	4
18	Suppression of Superficial Microglial Activation by Spinal Cord Stimulation Attenuates Neuropathic Pain Following Sciatic Nerve Injury in Rats. International Journal of Molecular Sciences, 2020, 21, 2390.	4.1	10

#	Article	IF	CITATIONS
19	Involvement of TRPV4 ionotropic channel in tongue mechanical hypersensitivity in dry-tongue rats. Journal of Oral Science, 2020, 62, 13-17.	1.7	7
20	Topically injected adrenocorticotropic hormone induces mechanical hypersensitivity on a fullâ€ŧhickness cutaneous wound model in rats. Experimental Dermatology, 2019, 28, 1010-1016.	2.9	2
21	Neurophysiology of Orofacial Pain. , 2019, , 1749-1771.		0
22	Involvement of inflammasome activation via elevation of uric acid level in nociception in a mouse model of muscle pain. Molecular Pain, 2019, 15, 174480691985879.	2.1	6
23	Role of neuron and non-neuronal cell communication in persistent orofacial pain. Journal of Dental Anesthesia and Pain Medicine, 2019, 19, 77.	1.0	9
24	Peripheral and Central Mechanisms of Persistent Orofacial Pain. Frontiers in Neuroscience, 2019, 13, 1227.	2.8	58
25	Increase in IGF-1 Expression in the Injured Infraorbital Nerve and Possible Implications for Orofacial Neuropathic Pain. International Journal of Molecular Sciences, 2019, 20, 6360.	4.1	20
26	Endothelin Signaling Contributes to Modulation of Nociception in Early-stage Tongue Cancer in Rats. Anesthesiology, 2018, 128, 1207-1219.	2.5	9
27	Involvement of neutrophils and interleukin-18 in nociception in a mouse model of muscle pain. Molecular Pain, 2018, 14, 174480691875728.	2.1	21
28	Involvement of transient receptor potential vanilloid 2 in intraâ€oral incisional pain. Oral Diseases, 2018, 24, 1093-1100.	3.0	7
29	Role of medullary astroglial glutamine synthesis in tooth pulp hypersensitivity associated with frequent masseter muscle contraction. Molecular Pain, 2018, 14, 174480691876327.	2.1	2
30	Role of Neuron-Glial Interaction Mediated by IL-1Î ² in Ectopic Tooth Pain. Journal of Dental Research, 2018, 97, 467-475.	5.2	22
31	Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. Journal of Oral Science, 2018, 60, 493-499.	1.7	30
32	Tumor Necrosis Factor Alpha Signaling in Trigeminal Ganglion Contributes to Mechanical Hypersensitivity in Masseter Muscle During Temporomandibular Joint Inflammation. Journal of Oral and Facial Pain and Headache, 2018, 32, 75-83.	1.4	11
33	Peripheral Glial Cell Line–Derived Neurotrophic Factor Facilitates the Functional Recovery of Mechanical Nociception Following Inferior Alveolar Nerve Transection in Rats. Journal of Oral and Facial Pain and Headache, 2018, 32, 229-237.	1.4	3
34	A Report on the Positive Response to an Outdoor Nature Challenge of a Snow Camp for Young Liver Transplant Patients. Transplantation Proceedings, 2017, 49, 115-120.	0.6	1
35	Involvement of microglia and astroglia in modulation of the orofacial motor functions in rats with neuropathic pain. Journal of Oral Biosciences, 2017, 59, 17-22.	2.2	7
36	Sensitization of TRPV1 and TRPA1 via peripheral mGluR5 signaling contributes to thermal and mechanical hypersensitivity. Pain, 2017, 158, 1754-1764.	4.2	28

#	Article	lF	CITATIONS
37	CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in <i>Porphyromonas gingivalis</i> -induced periodontitis in mice. Molecular Pain, 2017, 13, 174480691668926.	2.1	18
38	Enhancement of ERK phosphorylation and photic responses in Vc/C1 neurons of a migraine model. Neuroscience Letters, 2017, 647, 14-19.	2.1	2
39	Oxytocin alleviates orofacial mechanical hypersensitivity associated with infraorbital nerve injury through vasopressin-1A receptors of the rat trigeminal ganglia. Pain, 2017, 158, 649-659.	4.2	65
40	Feeding catheter gastrostomy with the round ligament of the liver prevents mechanical bowel obstruction after esophagectomy. Ecological Management and Restoration, 2017, 30, 1-8.	0.4	16
41	Phosphorylation of p38 in Trigeminal Ganglion Neurons Contributes to Tongue Heat Hypersensitivity in Mice. Journal of Oral and Facial Pain and Headache, 2017, 31, 372-380.	1.4	6
42	Neuron-glia interaction is a key mechanism underlying persistent orofacial pain. Journal of Oral Science, 2017, 59, 173-175.	1.7	31
43	CXCR4 signaling contributes to alveolar bone resorption in <i>Porphyromonas</i> <i>gingivalis</i> -induced periodontitis in mice. Journal of Oral Science, 2017, 59, 571-577.	1.7	13
44	Macrophages in trigeminal ganglion contribute to ectopic mechanical hypersensitivity following inferior alveolar nerve injury in rats. Journal of Neuroinflammation, 2017, 14, 249.	7.2	49
45	Neurophysiology of Orofacial Pain. , 2017, , 1-23.		7
46	Neurophysiology of Orofacial Pain. , 2017, , 1-23.		5
47	Neurophysiology of Orofacial Pain. , 2017, , 1-23.		0
48	Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Molecular Pain, 2016, 12, 174480691663370.	2.1	58
49	Lowâ€intensity pulsed ultrasound accelerates nerve regeneration following inferior alveolar nerve transection in rats. European Journal of Oral Sciences, 2016, 124, 246-250.	1.5	20
50	ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue. Molecular Pain, 2016, 12, 174480691664168.	2.1	13
51	Recent advances in basic research on the trigeminal ganglion. Journal of Physiological Sciences, 2016, 66, 381-386.	2.1	38
52	Involvement of Microglial P2Y ₁₂ Signaling in Tongue Cancer Pain. Journal of Dental Research, 2016, 95, 1176-1182.	5.2	32
53	Maternal Separation Induces Orofacial Mechanical Allodynia in Adulthood. Journal of Dental Research, 2016, 95, 1191-1197.	5.2	15
54	Regulation of transient receptor potential vanilloid 1 expression in trigeminal ganglion neurons via methyl-CpG binding protein 2 signaling contributes tongue heat sensitivity and inflammatory hyperalgesia in mice. Molecular Pain, 2016, 12, 174480691663320.	2.1	14

Masamichi Shinoda

#	Article	IF	CITATIONS
55	P38 Phosphorylation in Medullary Microglia Mediates Ectopic Orofacial Inflammatory Pain in Rats. Molecular Pain, 2015, 11, s12990-015-0053.	2.1	22
56	Morphological and functional changes in regenerated primary afferent fibres following mental and inferior alveolar nerve transection. European Journal of Pain, 2015, 19, 1258-1266.	2.8	10
57	Involvement of peripheral artemin signaling in tongue pain. Pain, 2015, 156, 2528-2537.	4.2	32
58	Orthodontic Force Facilitates Cortical Responses to Periodontal Stimulation. Journal of Dental Research, 2015, 94, 1158-1166.	5.2	32
59	Basic research and clinical investigations of the neural basis of orofacial pain. Journal of Oral Biosciences, 2015, 57, 27-36.	2.2	1
60	Involvement of medullary GABAergic system in extraterritorial neuropathic pain mechanisms associated with inferior alveolar nerve transection. Experimental Neurology, 2015, 267, 42-52.	4.1	34
61	Involvement of TRPV1 and TRPA1 in Incisional Intraoral and Extraoral Pain. Journal of Dental Research, 2015, 94, 446-454.	5.2	43
62	Involvement of Trigeminal Transition Zone and Laminated Subnucleus Caudalis in Masseter Muscle Hypersensitivity Associated with Tooth Inflammation. PLoS ONE, 2014, 9, e109168.	2.5	7
63	Involvement of astroglial glutamate–glutamine shuttle in modulation of the jawâ€opening reflex following infraorbital nerve injury. European Journal of Neuroscience, 2014, 39, 2050-2059.	2.6	17
64	<scp>TRPA</scp> 1 contributes to capsaicinâ€induced facial cold hyperalgesia in rats. European Journal of Oral Sciences, 2014, 122, 391-396.	1.5	32
65	Immune and Endocrine Function in Patients With Burning Mouth Syndrome. Clinical Journal of Pain, 2014, 30, 168-173.	1.9	33
66	Neural communication in the trigeminal ganglion contributes to ectopic orofacial pain. Journal of Oral Biosciences, 2013, 55, 165-168.	2.2	10
67	Fractalkine Signaling in Microglia Contributes to Ectopic Orofacial Pain following Trapezius Muscle Inflammation. Journal of Neuroscience, 2013, 33, 7667-7680.	3.6	48
68	Interaction of IL-1β and P2X ₃ Receptor in Pathologic Masseter Muscle Pain. Journal of Dental Research, 2013, 92, 456-460.	5.2	18
69	Nitric Oxide Signaling Contributes to Ectopic Orofacial Neuropathic Pain. Journal of Dental Research, 2013, 92, 1113-1117.	5.2	30
70	Changes in expression of growthâ€associated proteinâ€43 in trigeminal ganglion neurons and of the jaw opening reflex following inferior alveolar nerve transection in rats. European Journal of Oral Sciences, 2013, 121, 86-91.	1.5	6
71	Toll-like receptor 4 signaling in trigeminal ganglion neurons contributes tongue-referred pain associated with tooth pulp inflammation. Journal of Neuroinflammation, 2013, 10, 139.	7.2	45
72	Group cognitive-behavioral intervention for patients with burning mouth syndrome. Journal of Oral Science, 2013, 55, 17-22.	1.7	43

MASAMICHI SHINODA

#	Article	IF	CITATIONS
73	Mechanisms Underlying Ectopic Persistent Tooth-Pulp Pain following Pulpal Inflammation. PLoS ONE, 2013, 8, e52840.	2.5	36
74	Involvement of ERK Phosphorylation of Trigeminal Spinal Subnucleus Caudalis Neurons in Thermal Hypersensitivity in Rats with Infraorbital Nerve Injury. PLoS ONE, 2013, 8, e57278.	2.5	35
75	Pain intensity and psychosocial characteristics of patients with burning mouth syndrome and trigeminal neuralgia. Journal of Oral Science, 2012, 54, 321-327.	1.7	29
76	P2X3 receptor mediates ectopic mechanical allodynia with inflamed lower lip in mice. Neuroscience Letters, 2012, 528, 67-72.	2.1	29
77	Involvement of transient receptor potential vanilloid 1 in ectopic pain following inferior alveolar nerve transection in rats. Neuroscience Letters, 2012, 513, 95-99.	2.1	14
78	Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord. Journal of Neuroinflammation, 2012, 9, 258.	7.2	19
79	New Models of Experimental Parotitis and Parotid Gland Distension in Rats. Methods in Molecular Biology, 2012, 851, 133-148.	0.9	1
80	Satellite Glial Cell P2Y ₁₂ Receptor in the Trigeminal Ganglion is Involved in Lingual Neuropathic Pain Mechanisms in Rats. Molecular Pain, 2012, 8, 1744-8069-8-23.	2.1	98
81	Organization of hyperactive microglial cells in trigeminal spinal subnucleus caudalis and upper cervical spinal cord associated with orofacial neuropathic pain. Brain Research, 2012, 1451, 74-86.	2.2	57
82	Involvement of AMPA Receptor GluR2 and GluR3 Trafficking in Trigeminal Spinal Subnucleus Caudalis and C1/C2 Neurons in Acute-Facial Inflammatory Pain. PLoS ONE, 2012, 7, e44055.	2.5	13
83	Peripheral and Central Mechanisms of Trigeminal Neuropathic and Inflammatory Pain. Journal of Oral Biosciences, 2011, 53, 318-329.	2.2	39
84	Physiological Mechanisms Of Neuropathic Pain: The Orofacial Region. International Review of Neurobiology, 2011, 97, 227-250.	2.0	69
85	Involvement of GluR2 and GluR3 subunit C-termini in the trigeminal spinal subnucleus caudalis and C1–C2 neurons in trigeminal neuropathic pain. Neuroscience Letters, 2011, 491, 8-12.	2.1	18
86	Ascending multisynaptic pathways from the trigeminal ganglion to the anterior cingulate cortex. Experimental Neurology, 2011, 227, 69-78.	4.1	29
87	Organization of pERK-immunoreactive cells in trigeminal spinal nucleus caudalis, upper cervical cord, NTS and Pa5 following capsaicin injection into masticatory and swallowing-related muscles in rats. Brain Research, 2011, 1417, 45-54.	2.2	10
88	Mechanisms Involved in Extraterritorial Facial Pain following Cervical Spinal Nerve Injury in Rats. Molecular Pain, 2011, 7, 1744-8069-7-12.	2.1	33
89	Involvement of Peripheral Ionotropic Glutamate Receptors in Orofacial Thermal Hyperalgesia in Rats. Molecular Pain, 2011, 7, 1744-8069-7-75.	2.1	19
90	Nerve Growth Factor Contribution via Transient Receptor Potential Vanilloid 1 to Ectopic Orofacial Pain. Journal of Neuroscience, 2011, 31, 7145-7155.	3.6	70

MASAMICHI SHINODA

#	Article	IF	CITATIONS
91	PKCÎ ³ in Vc and C1/C2 is Involved in Trigeminal Neuropathic Pain. Journal of Dental Research, 2011, 90, 777-781.	5.2	27
92	Modulation of visceral hypersensitivity by glial cell line-derived neurotrophic factor family receptor α-3 in colorectal afferents. American Journal of Physiology - Renal Physiology, 2011, 300, G418-G424.	3.4	26
93	Alternation of Gene Expression in Trigeminal Ganglion Neurons Following Complete Freund's Adjuvant or Capsaicin Injection into the Rat Face. Journal of Molecular Neuroscience, 2010, 42, 200-209.	2.3	21
94	Purinergic Receptors are Involved in Tooth-Pulp Evoked Nocifensive Behavior and Brainstem Neuronal Activity. Molecular Pain, 2010, 6, 1744-8069-6-59.	2.1	29
95	Alteration of Primary Afferent Activity following Inferior Alveolar Nerve Transection in Rats. Molecular Pain, 2010, 6, 1744-8069-6-9.	2.1	43
96	Altered Purinergic Signaling in Colorectal Dorsal Root Ganglion Neurons Contributes to Colorectal Hypersensitivity. Journal of Neurophysiology, 2010, 104, 3113-3123.	1.8	29
97	Peripheral and Central P2X3 Receptor Contributions to Colon Mechanosensitivity and Hypersensitivity in the Mouse. Gastroenterology, 2009, 137, 2096-2104.	1.3	61
98	Involvement of ATP and its receptors on nociception in rat model of masseter muscle pain. Pain, 2008, 134, 148-157.	4.2	42
99	(111) Role of P2X receptors in colon hypersensitivity in the mouse. Journal of Pain, 2008, 9, 3.	1.4	40
100	Involvement of TRPV1 in Nociceptive Behavior in a Rat Model of Cancer Pain. Journal of Pain, 2008, 9, 687-699.	1.4	60
101	P2X3 Receptor Mediates Heat Hyperalgesia in a Rat Model of Trigeminal Neuropathic Pain. Journal of Pain, 2007, 8, 588-597.	1.4	59
102	Mechanical Allodynia and Thermal Hyperalgesia Induced by Experimental Squamous Cell Carcinoma of the Lower Gingiva in Rats. Journal of Pain, 2006, 7, 659-670.	1.4	80
103	Changes in P2X3 receptor expression in the trigeminal ganglion following monoarthritis of the temporomandibular joint in rats. Pain, 2005, 116, 42-51.	4.2	73
104	Heat and mechanical hyperalgesia in mice model of cancer pain. Pain, 2005, 117, 19-29.	4.2	68
105	Nerve terminals extend into the temporomandibular joint of adjuvant arthritic rats. European Journal of Pain, 2003, 7, 493-505.	2.8	25
106	Effects of physical training on body composition and organ weights in ovariectomized and hyperestrogenic rats. International Journal of Obesity, 2002, 26, 335-343.	3.4	81
107	Biomechanical calculation of human TM joint loading with jaw opening. Journal of Oral Rehabilitation, 2000, 27, 940.	3.0	10
108	Cold pressor stimulus temperature and resting masseter muscle haemodynamics in normal humans. Archives of Oral Biology, 1998, 43, 849-859.	1.8	19

1

#	Article	IF	CITATIONS
109	Viscoelastic Properties of the Pig Temporomandibular Joint Articular Soft Tissues of the Condyle and Disc. Journal of Dental Research, 1997, 76, 1760-1769.	5.2	83

110 Effects of physical training on body composition and organ weights in ovariectomized and hyperestrogenic rats. , 0, .