
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7642596/publications.pdf Version: 2024-02-01

Ηίσενα Ειικιιζανμα

#	Article	IF	CITATIONS
1	CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2022, 188, 1081-1094.	2.3	14
2	Hyperosmotic stress-induced microtubule disassembly in Chlamydomonas reinhardtii. BMC Plant Biology, 2022, 22, 46.	1.6	0
3	The <i>Chlamydomonas</i> bZIP transcription factor BLZ8 confers oxidative stress tolerance by inducing the carbon-concentrating mechanism. Plant Cell, 2022, 34, 910-926.	3.1	20
4	Protein Kinase MpYAK1 Is Involved in Meristematic Cell Proliferation, Reproductive Phase Change and Nutrient Signaling in the Liverwort <i>Marchantia polymorpha</i> . Plant and Cell Physiology, 2022, 63, 1063-1077.	1.5	1
5	Characterization of a CO2-Concentrating Mechanism with Low Sodium Dependency in the Centric Diatom Chaetoceros gracilis. Marine Biotechnology, 2021, 23, 456-462.	1.1	10
6	A plant-specific DYRK kinase DYRKP coordinates cell morphology in Marchantia polymorpha. Journal of Plant Research, 2021, 134, 1265-1277.	1.2	5
7	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	5.8	116
8	Algal Autophagy Is Necessary for the Regulation of Carbon Metabolism Under Nutrient Deficiency. Frontiers in Plant Science, 2020, 11, 36.	1.7	18
9	Pyrenoid Starch Sheath Is Required for LCIB Localization and the CO ₂ -Concentrating Mechanism in Green Algae. Plant Physiology, 2020, 182, 1883-1893.	2.3	50
10	Transformation of the Model Microalga Chlamydomonas reinhardtii Without Cell-Wall Removal. Methods in Molecular Biology, 2020, 2050, 155-161.	0.4	5
11	Chlamydomonas reinhardtii tubulin-gene disruptants for efficient isolation of strains bearing tubulin mutations. PLoS ONE, 2020, 15, e0242694.	1.1	7
12	CrABCA2 Facilitates Triacylglycerol Accumulation in under Nitrogen Starvation. Molecules and Cells, 2020, 43, 48-57.	1.0	5
13	Lipid remodeling regulator 1 (<scp>LRL</scp> 1) is differently involved in the phosphorusâ€depletion response from <scp>PSR</scp> 1 in <i>Chlamydomonas reinhardtii</i> . Plant Journal, 2019, 100, 610-626.	2.8	30
14	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	5.5	71
15	Algal Protein Kinase, Triacylglycerol Accumulation Regulator 1, Modulates Cell Viability and Gametogenesis in Carbon/Nitrogen-Imbalanced Conditions. Plant and Cell Physiology, 2019, 60, 916-930.	1.5	15
16	The bZIP1 Transcription Factor Regulates Lipid Remodeling and Contributes to ER Stress Management in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2019, 31, 1127-1140.	3.1	34
17	Inner lumen proteins stabilize doublet microtubules in cilia and flagella. Nature Communications, 2019, 10, 1143.	5.8	110
18	Isolation and Characterization of <i>Chlamydomonas</i> Autophagy-Related Mutants in Nutrient-Deficient Conditions. Plant and Cell Physiology, 2019, 60, 126-138.	1.5	39

#	Article	IF	CITATIONS
19	High-resolution suborganellar localization of Ca2+-binding protein CAS, a novel regulator of CO2-concentrating mechanism. Protoplasma, 2018, 255, 1015-1022.	1.0	19
20	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.	13.5	395
21	Dissecting the Process of Activation of Cancer-promoting Zinc-requiring Ectoenzymes by Zinc Metalation Mediated by ZNT Transporters. Journal of Biological Chemistry, 2017, 292, 2159-2173.	1.6	29
22	Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell, 2017, 171, 287-304.e15.	13.5	973
23	CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas. PLoS Genetics, 2017, 13, e1006645.	1.5	12
24	Production of ricinoleic acid-containing monoestolide triacylglycerides in an oleaginous diatom, Chaetoceros gracilis. Scientific Reports, 2016, 6, 36809.	1.6	15
25	Chloroplast-mediated regulation of CO ₂ -concentrating mechanism by Ca ²⁺ -binding protein CAS in the green alga <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12586-12591.	3.3	73
26	Algal Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase, Triacylglycerol Accumulation Regulator1, Regulates Accumulation of Triacylglycerol in Nitrogen or Sulfur Deficiency. Plant Physiology, 2015, 168, 752-764.	2.3	61
27	Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7315-7320.	3.3	121
28	Accumulation of Squalene in a Microalga Chlamydomonas reinhardtii by Genetic Modification of Squalene Synthase and Squalene Epoxidase Genes. PLoS ONE, 2015, 10, e0120446.	1.1	53
29	Isolation and characterization of mutants defective in the localization of LCIB, an essential factor for the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Photosynthesis Research, 2014, 121, 193-200.	1.6	20
30	Isolation and characterization of novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Photosynthesis Research, 2014, 121, 175-184.	1.6	27
31	Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia) Tj ETQq1 1 0.76	34314 rgB ⁻ 1.4	T /Qverlock
32	Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. Journal of Bioscience and Bioengineering, 2013, 115, 691-694.	1.1	131
33	The Uptake of CO2 by Cyanobacteria and Microalgae. Advances in Photosynthesis and Respiration, 2012, , 625-650.	1.0	14
34	Photosynthetic characteristics of a multicellular green alga Volvox carteri in response to external CO2 levels possibly regulated by CCM1/CIA5 ortholog. Photosynthesis Research, 2011, 109, 151-159.	1.6	8
35	Transcriptome Analysis of Respiration-Responsive Genes in Chlamydomonas reinhardtii: Mitochondrial Retrograde Signaling Coordinates the Genes for Cell Proliferation with Energy-Producing Metabolism. Plant and Cell Physiology, 2011, 52, 333-343.	1.5	12
36	Light and Low-CO2-Dependent LCIB–LCIC Complex Localization in the Chloroplast Supports the Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2010, 51, 1453-1468.	1.5	137

#	Article	IF	CITATIONS
37	Expression of a Low CO2–Inducible Protein, LCI1, Increases Inorganic Carbon Uptake in the Green Alga <i>Chlamydomonas reinhardtii</i> Â Â. Plant Cell, 2010, 22, 3105-3117.	3.1	83
38	CO2-concentrating Mechanism and Bioproduction in Microalgae. Trends in the Sciences, 2010, 15, 70-71.	0.0	0
39	The Chlamydomonas Hatching Enzyme, Sporangin, is Expressed in Specific Phases of the Cell Cycle and is Localized to the Flagella of Daughter Cells Within the Sporangial Cell Wall. Plant and Cell Physiology, 2009, 50, 572-583.	1.5	52
40	Carbon oncentrating mechanism in a green alga, <i>Chlamydomonas reinhardtii</i> , revealed by transcriptome analyses. Journal of Basic Microbiology, 2009, 49, 42-51.	1.8	60
41	Cloning and characterization of a squalene synthase gene from a petroleum plant, Euphorbia tirucalli L Planta, 2009, 229, 1243-1252.	1.6	50
42	Gene content, organization and molecular evolution of plant organellar genomes and sex chromosomes - Insights from the case of the liverwort Marchantia polymorpha. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2009, 85, 108-124.	1.6	10
43	A carboxysomal carbon oncentrating mechanism in the cyanelles of the â€~coelacanth' of the algal world, <i> Cyanophora paradoxa</i> ?. Physiologia Plantarum, 2008, 133, 27-32.	2.6	36
44	Production of Arachidonic and Eicosapentaenoic Acids in Plants Using Bryophyte Fatty Acid Δ6-Desaturase, Δ6-Elongase, and Δ5-Desaturase Genes. Bioscience, Biotechnology and Biochemistry, 2008, 72, 435-444.	0.6	50
45	Expression Analysis of Genes Associated with the Induction of the Carbon-Concentrating Mechanism in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2008, 147, 340-354.	2.3	99
46	Characterization of novel genes induced by sexual adhesion and gamete fusion and of their transcriptional regulation in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2008, 49, 981-993.	1.5	19
47	Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6472-6477.	3.3	125
48	Large-Scale Analysis of Chlorophyll Fluorescence Kinetics in Synechocystis sp. PCC 6803: Identification of the Factors Involved in the Modulation of Photosystem Stoichiometry. Plant and Cell Physiology, 2007, 48, 451-458.	1.5	43
49	Significance of Zinc in a Regulatory Protein, CCM1, Which Regulates the Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2007, 49, 273-283.	1.5	23
50	Acclimation to low [CO ₂] by an inorganic carbonâ€concentrating mechanism in <i>Cyanophora paradoxa</i> . Plant, Cell and Environment, 2007, 30, 1422-1435.	2.8	20
51	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	6.0	2,354
52	Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic Research, 2007, 16, 41-49.	1.3	47
53	Isolation and functional characterization of fatty acid Δ5-elongase gene from the liverwortMarchantia polymorphaL. FEBS Letters, 2006, 580, 149-154.	1.3	20
54	A Front-end Desaturase from Chlamydomonas reinhardtii Produces Pinolenic and Coniferonic Acids by ω13 Desaturation in Methylotrophic Yeast and Tobacco. Plant and Cell Physiology, 2006, 47, 64-73.	1.5	45

#	Article	IF	CITATIONS
55	Induction of a High-CO2-Inducible, Periplasmic Protein, H43, and its Application as a High-CO2-Responsive Marker for Study of the High-CO2-Sensing Mechanism in Chlamydomonas reinhardtii. Plant and Cell Physiology, 2006, 48, 299-309.	1.5	28
56	Cloning and characterization of a cDNA encoding β-amyrin synthase from petroleum plant Euphorbia tirucalli L Phytochemistry, 2005, 66, 1759-1766.	1.4	51
57	Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Molecular Biology, 2005, 57, 889-906.	2.0	41
58	Synthesis of Rubisco gene products is upregulated by increasing the copy number of rbcL gene in Chlamydomonas chloroplast genome, without increased accumulation of the two Rubisco subunits. Plant Biotechnology, 2005, 22, 145-149.	0.5	3
59	Expressed sequence tags from callus of Euphorbia tirucalli: A resource for genes involved in triterpenoid and sterol biosynthesis. Plant Biotechnology, 2004, 21, 349-353.	0.5	11
60	Plant regeneration from internode explants of Euphorbia tirucalli. Plant Biotechnology, 2004, 21, 397-399.	0.5	11
61	The Novel Myb Transcription Factor LCR1 Regulates the CO2-Responsive Gene Cah1, Encoding a Periplasmic Carbonic Anhydrase in Chlamydomonas reinhardtii Â[W]. Plant Cell, 2004, 16, 1466-1477.	3.1	108
62	Expression Profiling-Based Identification of CO2-Responsive Genes Regulated by CCM1 Controlling a Carbon-Concentrating Mechanism in Chlamydomonas reinhardtii. Plant Physiology, 2004, 135, 1595-1607.	2.3	188
63	Isolation and Characterization of Δ6-Desaturase, an ELO-Like Enzyme and Δ5-Desaturase from the Liverwort Marchantia Polymorpha and Production of Arachidonic and Eicosapentaenoic Acids in the Methylotrophic Yeast Pichia Pastoris. Plant Molecular Biology, 2004, 54, 335-352.	2.0	52
64	A mutant with constitutive sexual organ development in Marchantia polymorpha L Sexual Plant Reproduction, 2004, 16, 253-257.	2.2	17
65	The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii. Current Genetics, 2004, 46, 304-315.	0.8	53
66	Comparative analysis of the hspA mutant and wild-type Synechocystis sp. strain PCC 6803 under salt stress: evaluation of the role of hspA in salt-stress management. Archives of Microbiology, 2004, 182, 487-497.	1.0	30
67	Establishment of publicly available cDNA material and information resource of Chlamydomonas reinhardtii (Chlorophyta) to facilitate gene function analysis. Phycologia, 2004, 43, 722-726.	0.6	24
68	Evolution of ribosomal DNA unit on the X chromosome independent of autosomal units in the liverwort Marchantia polymorpha. Chromosome Research, 2003, 11, 695-703.	1.0	19
69	MpFAE3, a β-Ketoacyl-CoA Synthase Gene in the LiverwortMarchantia polymorphaL., Is Preferentially Involved in Elongation of Palmitic Acid to Stearic Acid. Bioscience, Biotechnology and Biochemistry, 2003, 67, 1667-1674.	0.6	17
70	Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochemical and Biophysical Research Communications, 2003, 301, 711-717.	1.0	145
71	Functional Analysis of a β-Ketoacyl-CoA Synthase Gene,MpFAE2, by Gene Silencing in the LiverwortMarchantia polymorphaL Bioscience, Biotechnology and Biochemistry, 2003, 67, 605-612.	0.6	26
72	Identification and Expression Analysis of cDNA Encoding a Chloroplast Recombination Protein REC1, the Chloroplast RecA Homologue inChlamydomonas reinhardtii. Bioscience, Biotechnology and Biochemistry, 2003, 67, 2608-2613.	0.6	35

#	Article	IF	CITATIONS
73	Cis-acting Elements and DNA-Binding Proteins Involved in CO2-Responsive Transcriptional Activation of Cah1 Encoding a Periplasmic Carbonic Anhydrase in Chlamydomonas reinhardtii Â. Plant Physiology, 2003, 133, 783-793.	2.3	47
74	Genes Essential to Sodium-dependent Bicarbonate Transport in Cyanobacteria. Journal of Biological Chemistry, 2002, 277, 18658-18664.	1.6	245
75	Photochemical Properties of the Flavin Mononucleotide-Binding Domains of the Phototropins from Arabidopsis, Rice, andChlamydomonas reinhardtii. Plant Physiology, 2002, 129, 762-773.	2.3	292
76	Multicopy genes uniquely amplified in the Y chromosome-specific repeats of the liverwort Marchantia polymorpha. Nucleic Acids Research, 2002, 30, 4675-4681.	6.5	50
77	Regulation of a carbon concentrating mechanism through CCM1 in Chlamydomonas reinhardtii. Functional Plant Biology, 2002, 29, 211.	1.1	15
78	Two tandemly-located matrix metalloprotease genes with different expression patterns in the Chlamydomonas sexual cell cycle. Current Genetics, 2001, 40, 136-143.	0.8	30
79	The Y chromosome in the liverwort Marchantia polymorpha has accumulated unique repeat sequences harboring a male-specific gene. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9454-9459.	3.3	95
80	Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: Genes involved and their phylogenetic relationship with homologous genes in other organisms. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11789-11794.	3.3	232
81	Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5347-5352.	3.3	167
82	Characteristics and Sequence of Phosphoglycolate Phosphatase from a Eukaryotic Green Alga Chlamydomonas reinhardtii. Journal of Biological Chemistry, 2001, 276, 45573-45579.	1.6	35
83	Isolation of X and Y Chromosome-Specific DNA Markers From a Liverwort, <i>Marchantia polymorpha</i> , by Representational Difference Analysis. Genetics, 2001, 159, 981-985.	1.2	31
84	Construction of male and female PAC genomic libraries suitable for identification of Y-chromosome-specific clones from the liverwort,Marchantia polymorpha. Plant Journal, 2000, 24, 421-428.	2.8	65
85	Direct transformation and plant regeneration of the haploid liverwort Marchantia polymorpha L. Transgenic Research, 2000, 9, 179-185.	1.3	71
86	Comparison of Expressed Sequence Tags from Male and Female Sexual Organs of Marchantia polymorpha. DNA Research, 2000, 7, 165-174.	1.5	20
87	Generation of Expressed Sequence Tags from Low-CO2 and High-CO2 Adapted Cells of Chlamydomonas reinhardtii. DNA Research, 2000, 7, 305-307.	1.5	107
88	Algal carbonic anhydrase. , 2000, , 535-546.		4
89	Expressed Sequence Tags from Immature Female Sexual Organ of a Liverwort, Marchantia polymorpha. DNA Research, 1999, 6, 1-11.	1.5	32
90	CO2-Responsive Transcriptional Regulation ofCAH1 Encoding Carbonic Anhydrase Is Mediated by Enhancer and Silencer Regions in Chlamydomonas reinhardtii. Plant Physiology, 1999, 121, 1329-1337.	2.3	49

#	Article	IF	CITATIONS
91	A Large Scale Structural Analysis of cDNAs in a Unicellular Green Alga, Chlamydomonas reinhardtii. I. Generation of 3433 Non-redundant Expressed Sequence Tags. DNA Research, 1999, 6, 369-373.	1.5	152
92	Bryophyte 5S rDNA was inserted into 45S rDNA repeat units after the divergence from higher land plants. Plant Molecular Biology, 1999, 41, 679-685.	2.0	84
93	Two mRNA Species Encoding Calcium-Dependent Protein Kinases Are Differentially Expressed in Sexual Organs of Marchantia polymorpha through Alternative Splicing. Plant and Cell Physiology, 1999, 40, 205-212.	1.5	32
94	Isolation and characterization of high-CO2 requiring mutants from Chlamydomonas reinhardtii by gene tagging. Canadian Journal of Botany, 1998, 76, 1092-1097.	1.2	11
95	Coexistence of nuclear DNA-encoded tRNAVal(AAC) and mitochondrial DNA- encoded tRNAVal(UAC) in mitochondria of a liverwort Marchantia polymorpha. Nucleic Acids Research, 1998, 26, 2168-2172.	6.5	28
96	Isolation and characterization of high-CO ₂ requiring mutants from <i>Chlamydomonas reinhardtii</i> by gene tagging. Canadian Journal of Botany, 1998, 76, 1092-1097.	1.2	16
97	Accumulation of nuclear-encoded tRNAThr (AGU) in mitochondria of the liverwort Marchantia polymorpha. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1997, 1350, 262-266.	2.4	13
98	Interorganellar gene transfer in bryophytes: the functional. Molecular Genetics and Genomics, 1997, 256, 589.	2.4	3
99	cemA homologue essential to CO2 transport in the cyanobacterium Synechocystis PCC6803 Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4006-4010.	3.3	44
100	Occurrence of nuclear-encoded tRNA lle in mitochondria of the liverwort Marchantia polymorpha. Current Genetics, 1996, 30, 181-185.	0.8	25
101	Function and Gene Expression of Carbonic Anhydrase in Carbon Dioxide Fixation Nippon Nogeikagaku Kaishi, 1995, 69, 307-313.	0.0	0
102	Active transcription of the pseudogene for subunit 7 of the NADH dehydrogenase in Marchantia polymorpha mitochondria. Molecular Genetics and Genomics, 1995, 247, 565-570.	2.4	9
103	Understanding and utilization of inorganic carbon concentrating mechanism to improve plant CO2 fixation. Energy Conversion and Management, 1995, 36, 747-750.	4.4	0
104	Molecular dissection of GT-1 from Arabidopsis Plant Cell, 1994, 6, 1805-1813.	3.1	62
105	Cotranscriptional expression of mitochondrial genes for subunits of NADH dehydrogenase, nad5, nad4, nad2, in Marchantia polymorpha. Molecular Genetics and Genomics, 1993, 237, 343-350.	2.4	10
106	Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4693-4697.	3.3	107
107	A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942 Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4437-4441.	3.3	203
108	Characterization of Carbonic Anhydrase Isozyme CA2, Which Is the <i>CAH2</i> Gene Product, in <i>Chlamydomonas reinhardtii</i> . Bioscience, Biotechnology and Biochemistry, 1992, 56, 794-798.	0.6	29

#	Article	IF	CITATIONS
109	Cloning and Nucleotide Sequence of afrxC-ORF469 Gene Cluster ofSynechocystisPCC6803: Conservation with Liverwort ChloroplastfrxC-ORF465 andnifOperon. Bioscience, Biotechnology and Biochemistry, 1992, 56, 788-793.	0.6	24
110	Identification of Carbonic Anhydrase Gene Which is Essential to the Inorganic Carbon Concentrating Mechanism in Cyanobacteria. , 1992, , 799-802.		1
111	cDNA cloning and gene expression of carbonic anhydrase in Chlamydomonas reinhardtii. Canadian Journal of Botany, 1991, 69, 1088-1096.	1.2	12
112	ldentification of a genomic region that complements a temperature-sensitive, high CO2-requiring mutant of the cyanobacterium, Synechococcus sp. PCC7942. Molecular Genetics and Genomics, 1991, 226, 401-408.	2.4	19
113	Structure and differential expression of two genes encoding carbonic anhydrase in Chlamydomonas reinhardtii Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 9779-9783.	3.3	138
114	Subunit constitution of carbonic anhydrase from Chlamydomonas reinhardtii. FEBS Journal, 1990, 192, 557-562.	0.2	54
115	cDNA cloning, sequence, and expression of carbonic anhydrase in Chlamydomonas reinhardtii: regulation by environmental CO2 concentration Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4383-4387.	3.3	195
116	Light-Induced Carbonic Anhydrase Expression in Chlamydomonas reinhardtii. Plant Physiology, 1990, 94, 1103-1110.	2.3	71
117	Nucleotide sequences of two genesCAH1andCAH2which encode carbonic anhydrase polypeptides inChlamydomonas reinhardtii. Nucleic Acids Research, 1990, 18, 6441-6442.	6.5	40
118	Gene organization and newly identified groups of genes of the chloroplast genome from a liverwort, Marchantia polymorpha. Photosynthesis Research, 1988, 16, 7-22.	1.6	20
119	Structure and organization of Marchantia polymorpha chloroplast genome. Journal of Molecular Biology, 1988, 203, 281-298.	2.0	142
120	Structure and organization of Marchantia polymorpha chloroplast genome. Journal of Molecular Biology, 1988, 203, 299-331.	2.0	111
121	Structure and organization of Marchantia polymorpha chloroplast genome. Journal of Molecular Biology, 1988, 203, 333-351.	2.0	69
122	Structure and organization of Marchantia olymorpha chloroplast genome. Journal of Molecular Biology, 1988, 203, 353-372.	2.0	88
123	Gene organization and newly identified groups of genes of the chloroplast genome from a liverwort, Marchantia polymorpha. , 1988, , 27-42.		Ο
124	Splicing of group II introns in mRNAs coding for cytochrome b 6 and subunit IV in the liverwort Marchantia polymorpha chloroplast genome Exon specifying a region coding for two genes with the spacer region. FEBS Letters, 1987, 220, 61-66.	1.3	17
125	Genetic System of Chloroplasts. Cold Spring Harbor Symposia on Quantitative Biology, 1987, 52, 791-804.	2.0	31
126	Coding sequences for chloroplast ribosomal protein S12 from the liverwort,Marchantia polymorpha, are separated far apart on the different DNA strands. FEBS Letters, 1986, 198, 11-15.	1.3	73

#	Article	IF	CITATIONS
127	Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322, 572-574.	13.7	1,552
128	Complete nucleotide sequence of liverwortMarchantia polymorpha chloroplast DNA. Plant Molecular Biology Reporter, 1986, 4, 149-175.	1.0	46
129	Molecular cloning of promoters functional in Escherichia coli from chloroplast DNA of a liverwort, Marchantia polymorpha Agricultural and Biological Chemistry, 1985, 49, 2725-2731.	0.3	4
130	Molecular Cloning of Promoters Functional in Escherichia coli from Chloroplast DNA of a Liverwort, Marchantia polymorpha. Agricultural and Biological Chemistry, 1985, 49, 2725-2731.	0.3	3
131	Nucleotide sequences of chloroplast 4.5 S ribosomal RNA from a leafy liverwort, Jungermannia subulata , and a thalloid liverwort, Marchantia polymorpha. FEBS Letters, 1985, 185, 203-207.	1.3	8
132	<i>In Vitro</i> DNA Synthesis by Chloroplasts Isolated from <i>Marchantia polymorpha</i> L. Cell Suspension Cultures. Agricultural and Biological Chemistry, 1984, 48, 1239-1244.	0.3	0
133	In vitro chloroplast DNA synthesis. Part I. In vitro DNA synthesis by chloroplasts isolated from Marchantia polymorpha L. cell suspension cultures Agricultural and Biological Chemistry, 1984, 48, 1239-1244.	0.3	9
134	Physical mappings of chloroplast DNA from liverwort Marchantia polymorpha L. cell suspension cultures. Molecular Genetics and Genomics, 1983, 189, 1-9.	2.4	43
135	A Simple Method for Isolation of Chloroplast DNA from <i>Marchantia polymorpha</i> L. Cell Suspension Cultures. Agricultural and Biological Chemistry, 1982, 46, 237-242.	0.3	1
136	A simple method for isolation of chloroplast DNA from Marchantia polymorpha l. cell suspension cultures Agricultural and Biological Chemistry, 1982, 46, 237-242.	0.3	20