Sung Chul Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Combinations of dual-function azide-containing crosslinkers with C-H insertion capabilities for polymeric elastomers with improved adhesion properties. European Polymer Journal, 2022, 162, 110906.	5.4	2
2	Heterogeneous catalyst SiO2–LaCl3·7H2O: characterization and microwave-assisted green synthesis of α-aminophosphonates and their antimicrobial activity. Molecular Diversity, 2022, , 1.	3.9	2
3	Chemical transformation of renewable algae oil to polyetheramide polyols for polyurethane coatings. Progress in Organic Coatings, 2021, 151, 106084.	3.9	11
4	Effect of dicarbonyl complexing agents on double metal cyanide catalysts toward copolymerization of CO2 and propylene oxide. Catalysis Today, 2021, 375, 335-342.	4.4	18
5	All-Polycarbonate Graft Copolymers with Tunable Morphologies by Metal-Free Copolymerization of CO ₂ with Epoxides. Macromolecules, 2021, 54, 6144-6152.	4.8	21
6	Nonedible Vegetable Oil-Based Polyols in Anticorrosive and Antimicrobial Polyurethane Coatings. Polymers, 2021, 13, 3149.	4.5	20
7	Facile, scalable, and universal modification strategy of polyolefin utilizing noncatalytic C H insertion capability of azide: Sulfonyl azide end-functionalized polystyrene to modify polyethylene. European Polymer Journal, 2021, 161, 110863.	5.4	2
8	Effect of different itaconic acid contents of poly(acrylonitrile-co-itaconic acid)s on their carbonization behaviors at elevated temperatures. Polymer Degradation and Stability, 2020, 181, 109373.	5.8	8
9	Carbon Dioxide Based Poly(ether carbonate) Polyol in Bi-polyol Mixtures for Rigid Polyurethane Foams. Journal of Polymers and the Environment, 2020, 28, 1160-1168.	5.0	10
10	Synergistic effect of comonomers on the thermal oxidative stabilization of polyacrylonitrile copolymers for carbon materials. Polymer Degradation and Stability, 2019, 161, 191-197.	5.8	16
11	Facile Room-Temperature Preparation of Flexible Polyurethane Foams from Carbon Dioxide Based Poly(ether carbonate) Polyols with a Reduced Generation of Acetaldehyde. ACS Omega, 2019, 4, 7944-7952.	3.5	17
12	Synthesis of Stimuli-Responsive Heterofunctional Dendrimer by Passerini Multicomponent Reaction. ACS Omega, 2019, 4, 6660-6668.	3.5	20
13	Synthesis of Bis(indolyl)methanes Using Hyper-Cross-Linked Polyaromatic Spheres Decorated with Bromomethyl Groups as Efficient and Recyclable Catalysts. ACS Omega, 2018, 3, 2242-2253.	3.5	43
14	Compositional elements of thermoplastic polyurethanes for reducing the generation of acetaldehyde during thermo-oxidative degradation. Polymer Testing, 2018, 68, 279-286.	4.8	4
15	Functional soybean oil-based polyols as sustainable feedstocks for polyurethane coatings. Industrial Crops and Products, 2018, 113, 249-258.	5.2	57
16	Synthesis of biobased polyols using algae oil for multifunctional polyurethane coatings. Green Materials, 2018, 6, 165-177.	2.1	22
17	Controlled Hydroxyl Functionality of Soybean Oil-Based Polyols for Polyurethane Coatings with Improved Anticorrosion Properties. Macromolecular Research, 2018, 26, 696-703.	2.4	13
18	Porous composite separator membranes of dye-sensitized solar cells with flexible substrate for their improved stability. Journal of Materials Science, 2018, 53, 12365-12373	3.7	4

SUNG CHUL HONG

#	Article	IF	CITATIONS
19	Identifying the role of the acidic comonomer in poly(acrylonitrile-co-itaconic acid) during stabilization process through low temperature electron beam irradiation. Polymer Degradation and Stability, 2018, 153, 220-226.	5.8	9
20	Carbon Dioxide-Based Polyols as Sustainable Feedstock of Thermoplastic Polyurethane for Corrosion-Resistant Metal Coating. ACS Sustainable Chemistry and Engineering, 2017, 5, 3871-3881.	6.7	87
21	An efficient chain transfer reaction of the trithiocarbonate unit as a tool to prepare a functional polyolefin: a post-polymerization modification of ethylene–propylene–diene terpolymer for improved oil resistance. Polymer Chemistry, 2017, 8, 3307-3316.	3.9	9
22	Core/shell structured carbon nanofiber/platinum nanoparticle hybrid web as a counter electrode for dye-sensitized solar cell. Journal of Industrial and Engineering Chemistry, 2017, 52, 211-217.	5.8	19
23	Effect of controlled tacticity of polyacrylonitrile (co)polymers on their thermal oxidative stabilization behaviors and the properties of resulting carbon films. Carbon, 2017, 121, 502-511.	10.3	51
24	Efficient and quantitative chemical transformation of vegetable oils to polyols through a thiol-ene reaction for thermoplastic polyurethanes. Industrial Crops and Products, 2016, 87, 78-88.	5.2	68
25	Preparation of vegetable oil-based polyols with controlled hydroxyl functionalities for thermoplastic polyurethane. European Polymer Journal, 2016, 78, 46-60.	5.4	95
26	Facile preparation of thermoplastic elastomer with high service temperature from dry selective curing of compatibilized EPDM/polyamide-12 blends. European Polymer Journal, 2015, 66, 367-375.	5.4	12
27	Vegetable oil-based polyols for sustainable polyurethanes. Macromolecular Research, 2015, 23, 1079-1086.	2.4	55
28	Controlled architectures of poly(acrylonitrile-co-itaconic acid) for efficient structural transformation into carbon materials. Carbon, 2014, 69, 571-581.	10.3	43
29	Dispersion controlled platinum/multi-walled carbon nanotube hybrid for counter electrodes of dye-sensitized solar cells. Macromolecular Research, 2014, 22, 397-404.	2.4	8
30	Solar Cells: Triple-Layer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dye-Sensitized Solar Cells (Adv. Energy Mater. 13/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	1
31	Tripleâ€Layer Structured Composite Separator Membranes with Dual Pore Structures and Improved Interfacial Contact for Sustainable Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1400477.	19.5	12
32	Facile and scalable fabrication of transparent and high performance Pt/reduced graphene oxide hybrid counter electrode for dye-sensitized solar cells. International Journal of Precision Engineering and Manufacturing, 2014, 15, 1193-1199.	2.2	24
33	Application of block copolymeric surface modifier with crosslinkable units for montmorillonite nanocomposites. Journal of Applied Polymer Science, 2013, 127, 690-698.	2.6	2
34	Structural Evolution of Poly(acrylonitrile- <i>co</i> -itaconic acid) during Thermal Oxidative Stabilization for Carbon Materials. Macromolecules, 2013, 46, 5882-5889.	4.8	102
35	Characteristics of dye-sensitized solar cells with surface-modified multi-walled carbon nanotubes as counter electrodes. Journal of Materials Science, 2013, 48, 906-912.	3.7	15
36	Characteristics of the surface modification of montmorillonite with a bifunctional block copolymer. Polymer Composites, 2013, 34, 1640-1647.	4.6	0

SUNG CHUL HONG

#	Article	IF	CITATIONS
37	UV-cross-linked block copolymers for initiator-free, controlled in situ gelation of electrolytes in dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 18854.	6.7	14
38	Large scale vertical implantation of crystalline titania nanotube arrays. Journal of Industrial and Engineering Chemistry, 2011, 17, 813-817.	5.8	6
39	Study on Immobilized Metallocene and Single-Site Catalysts for the Preparation of Ultra-High Molecular Weight Polyethylene at Various Polymerization Conditions. Polymer-Plastics Technology and Engineering, 2011, 50, 1557-1563.	1.9	7
40	Study on the grafting of polystyrene onto ethylene-propylene-diene terpolymer through reversible addition and fragmentation chain transfer technique. Macromolecular Research, 2010, 18, 927-934.	2.4	10
41	Effect of Poly(2-ethyl-2-oxazoline) on Multi-Walled Carbon Nanotubes Reinforced Poly(vinyl alcohol) Composites. Polymers and Polymer Composites, 2010, 18, 251-256.	1.9	3
42	Preparation and mechanical properties of poly(vinyl chloride)/bamboo flour composites with a novel block copolymer as a coupling agent. Journal of Applied Polymer Science, 2008, 108, 2654-2659.	2.6	40
43	Pyrene-containing polystyrene segmented copolymer from nitroxide mediated polymerization and its application for the noncovalent functionalization of as-prepared multiwalled carbon nanotubes. European Polymer Journal, 2008, 44, 3087-3095.	5.4	33
44	Functionalization of Multi-Walled Carbon Nanotubes with Poly(2-ethyl-2-oxazoline). Macromolecular Symposia, 2007, 249-250, 270-275.	0.7	14
45	Study on the Functionalization of Multi-Walled Carbon Nanotube with Monoamine Terminated Poly(ethylene oxide). Macromolecular Symposia, 2007, 249-250, 276-282.	0.7	9
46	Immobilized Me2Si(C5Me4)(N-tBu)TiCl2/(nBuCp)2ZrCl2 hybrid metallocene catalyst system for the production of poly(ethylene-co-hexene) with pseudo-bimodal molecular weight and inverse comonomer distribution. Polymer Engineering and Science, 2007, 47, 131-139.	3.1	24
47	Concurrent Initiation by Air in the Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecular Chemistry and Physics, 2003, 204, 1151-1159.	2.2	42
48	Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl) Tj ETQq0 0 0 rgB atom transfer radical polymerization. Journal of Polymer Science Part A, 2002, 40, 2736-2749.	T /Overlock 2.3	10 Tf 50 307 110
49	An Immobilized/Soluble Hybrid Catalyst System for Atom Transfer Radical Polymerization. Macromolecules, 2001, 34, 5099-5102.	4.8	80
50	Preparation of Polyisobutene-graft-Poly(methyl methacrylate) and Polyisobutene-graft-Polystyrene with Different Compositions and Side Chain Architectures through Atom Transfer Radical Polymerization (ATRP). Macromolecular Chemistry and Physics, 2001, 202, 3392-3402.	2.2	64