
Emmanuel Daucé

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/764157/publications.pdf Version: 2024-02-01

EMMANUEL DAUCÃO

#	Article	IF	CITATIONS
1	Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Networks, 1998, 11, 521-533.	5.9	66
2	Multistability in Large Scale Models of Brain Activity. PLoS Computational Biology, 2015, 11, e1004644.	3.2	55
3	Resonant spatiotemporal learning in large random recurrent networks. Biological Cybernetics, 2002, 87, 185-198.	1.3	10
4	Active Fovea-Based Vision Through Computationally-Effective Model-Based Prediction. Frontiers in Neurorobotics, 2018, 12, 76.	2.8	10
5	Mean-field Theory and Synchronization in Random Recurrent Neural Networks. Neural Processing Letters, 2001, 14, 115-126.	3.2	8
6	A dual foveal-peripheral visual processing model implements efficient saccade selection. Journal of Vision, 2020, 20, 22.	0.3	8
7	Temporal pattern identification using spike-timing dependent plasticity. Neurocomputing, 2007, 70, 2009-2016.	5.9	7
8	Learning and control with chaos: From biology to robotics. Behavioral and Brain Sciences, 2001, 24, 824-825.	0.7	5
9	Visual Search as Active Inference. Communications in Computer and Information Science, 2020, , 165-178.	0.5	5
10	Short term memory in recurrent networks of spiking neurons. Natural Computing, 2004, 3, 135-157.	3.0	2
11	Learning and control with large dynamic neural networks. European Physical Journal: Special Topics, 2007, 142, 123-161.	2.6	2
12	Computational neuroscience, from multiple levels to multi-level. Journal of Physiology (Paris), 2010, 104, 1-4.	2.1	2
13	Reward-based online learning in non-stationary environments: Adapting a P300-speller with a & & & & & & & & & & & & & & & & & &		2
14	How and where does the brain predict the when: a Bayesian approach to modeling temporal expectation. BMC Neuroscience, 2011, 12, .	1.9	1
15	Novelty Learning in a Discrete Time Chaotic Network. Perspectives in Neural Computing, 1998, , 1051-1056.	0.1	0
16	A model of cell specialization using a Hebbian policy-gradient approach with "slow" noise. BMC Neuroscience, 2009, 10, .	1.9	0
17	Simple spatio-temporal transformation with sub-threshold integration in the saccadic system. BMC Neuroscience, 2011, 12, .	1.9	0
18	Multistability in large scale models of brain activity. BMC Neuroscience, 2013, 14, .	1.9	0

#	Article	IF	CITATIONS
19	Learning from Chaos: A Model of Dynamical Perception. Lecture Notes in Computer Science, 2001, , 1129-1134.	1.3	0
20	A Model of Neuronal Specialization Using Hebbian Policy-Gradient with "Slow―Noise. Lecture Notes in Computer Science, 2009, , 218-228.	1.3	0
21	End-Effect Exploration Drive for Effective Motor Learning. Communications in Computer and Information Science, 2020, , 114-124.	0.5	0