
Domenico Tortorella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641529/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of broadly neutralizing antibodies targeting the cytomegalovirus subdominant antigen gH. Communications Biology, 2022, 5, 387.	4.4	8
2	Immunoglobulin A antibody composition is sculpted to bind the self gut microbiome. Science Immunology, 2022, 7, .	11.9	18
3	Quantifying Absolute Neutralization Titers against SARS-CoV-2 by a Standardized Virus Neutralization Assay Allows for Cross-Cohort Comparisons of COVID-19 Sera. MBio, 2021, 12, .	4.1	64
4	TAP dysfunction in dendritic cells enables noncanonical cross-presentation for T cell priming. Nature Immunology, 2021, 22, 497-509.	14.5	27
5	Valspodar limits human cytomegalovirus infection and dissemination. Antiviral Research, 2021, 193, 105124.	4.1	4
6	An Influenza Virus Hemagglutinin-Based Vaccine Platform Enables the Generation of Epitope Specific Human Cytomegalovirus Antibodies. Vaccines, 2019, 7, 51.	4.4	0
7	CD46 facilitates entry and dissemination of human cytomegalovirus. Nature Communications, 2019, 10, 2699.	12.8	53
8	miRNA-mediated targeting of human cytomegalovirus reveals biological host and viral targets of IE2. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1069-1074.	7.1	31
9	Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science, 2017, 356, 175-180.	12.6	453
10	The Microtubule Inhibitor Podofilox Inhibits an Early Entry Step of Human Cytomegalovirus. Viruses, 2016, 8, 295.	3.3	16
11	ISG15 deficiency and increased viral resistance in humans but not mice. Nature Communications, 2016, 7, 11496.	12.8	156
12	Functional screening for anti-CMV biologics identifies a broadly neutralizing epitope of an essential envelope protein. Nature Communications, 2016, 7, 13627.	12.8	21
13	Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. MSphere, 2016, 1, .	2.9	104
14	Convallatoxin-Induced Reduction of Methionine Import Effectively Inhibits Human Cytomegalovirus Infection and Replication. Journal of Virology, 2016, 90, 10715-10727.	3.4	22
15	Human cytomegalovirus gH stability and trafficking are regulated by ER-associated degradation and transmembrane architecture. Scientific Reports, 2016, 6, 23692.	3.3	8
16	Virion Glycoprotein-Mediated Immune Evasion by Human Cytomegalovirus: a Sticky Virus Makes a Slick Getaway. Microbiology and Molecular Biology Reviews, 2016, 80, 663-677.	6.6	56
17	Targeting Viral Proteostasis Limits Influenza Virus, HIV, and Dengue Virus Infection. Immunity, 2016, 44, 46-58.	14.3	110
18	Development of a high-content screen for the identification of inhibitors directed against the early steps of the cytomegalovirus infectious cycle. Antiviral Research, 2015, 113, 49-61.	4.1	30

DOMENICO TORTORELLA

#	Article	IF	CITATIONS
19	Human Cytomegalovirus Modulates Monocyte-Mediated Innate Immune Responses during Short-Term Experimental Latency <i>In Vitro</i> . Journal of Virology, 2014, 88, 9391-9405.	3.4	41
20	Novel Class of Potential Therapeutics that Target Ricin Retrograde Translocation. Toxins, 2014, 6, 33-53.	3.4	8
21	Human Cytomegalovirus US28 Facilitates Cell-to-Cell Viral Dissemination. Viruses, 2014, 6, 1202-1218.	3.3	48
22	Development of a High-Throughput Assay To Measure the Neutralization Capability of Anti-Cytomegalovirus Antibodies. Vaccine Journal, 2013, 20, 540-550.	3.1	19
23	Neutralizing Antibodies Against Previously Encountered Influenza Virus Strains Increase over Time: A Longitudinal Analysis. Science Translational Medicine, 2013, 5, 198ra107.	12.4	157
24	Diverse immune evasion strategies by human cytomegalovirus. Immunologic Research, 2012, 54, 140-151.	2.9	110
25	Human cytomegalovirus US3 modulates destruction of MHC class I molecules. Molecular Immunology, 2012, 51, 245-253.	2.2	31
26	Dislocation of Ricin Toxin A Chains in Human Cells Utilizes Selective Cellular Factors. Journal of Biological Chemistry, 2011, 286, 21231-21238.	3.4	30
27	TRAM1 is involved in disposal of ER membrane degradation substrates. Experimental Cell Research, 2010, 316, 2113-2122.	2.6	20
28	The cytomegalovirus-encoded chemokine receptor US28 promotes intestinal neoplasia in transgenic mice. Journal of Clinical Investigation, 2010, 120, 3969-3978.	8.2	96
29	Human Cytomegalovirus-Encoded Immune Modulators Partner To Downregulate Major Histocompatibility Complex Class I Molecules. Journal of Virology, 2009, 83, 1359-1367.	3.4	17
30	Cln6 mutants associated with neuronal ceroid lipofuscinosis are degraded in a proteasome-dependent manner. Bioscience Reports, 2009, 29, 173-181.	2.4	15
31	TRAM1 Participates in Human Cytomegalovirus US2- and US11-mediated Dislocation of an Endoplasmic Reticulum Membrane Glycoprotein. Journal of Biological Chemistry, 2009, 284, 5905-5914.	3.4	17
32	A Bipartite Trigger for Dislocation Directs the Proteasomal Degradation of an Endoplasmic Reticulum Membrane Glycoprotein. Journal of Biological Chemistry, 2008, 283, 4031-4043.	3.4	7
33	Endoplasmic reticulum chaperones participate in human cytomegalovirus US2-mediated degradation of class I major histocompatibility complex molecules. Journal of General Virology, 2008, 89, 1122-1130.	2.9	19
34	Dislocation of an Endoplasmic Reticulum Membrane Glycoprotein Involves the Formation of Partially Dislocated Ubiquitinated Polypeptides. Journal of Biological Chemistry, 2007, 282, 26845-26856.	3.4	18
35	The proteasome participates in the dislocation of an ERâ€resident Type I membrane glycoprotein. FASEB Journal, 2007, 21, A1019.	0.5	0
36	Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature, 2006, 441, 894-897.	27.8	123

#	Article	IF	CITATIONS
37	A Structural Determinant of Human Cytomegalovirus US2 Dictates the Down-regulation of Class I Major Histocompatibility Molecules. Journal of Biological Chemistry, 2006, 281, 19395-19406.	3.4	17
38	Cotranslational endoplasmic reticulum assembly of FcεRI controls the formation of functional IgE-binding receptors. Journal of Experimental Medicine, 2005, 201, 267-277.	8.5	40
39	Dissection of the Dislocation Pathway for Type I Membrane Proteins with a New Small Molecule Inhibitor, Eeyarestatin. Molecular Biology of the Cell, 2004, 15, 1635-1646.	2.1	101
40	A glycosylated type I membrane protein becomes cytosolic when peptide: N-glycanase is compromised. EMBO Journal, 2004, 23, 650-658.	7.8	118
41	Dislocation of a Type I Membrane Protein Requires Interactions between Membrane-spanning Segments within the Lipid Bilayer. Molecular Biology of the Cell, 2003, 14, 3690-3698.	2.1	38
42	Ubiquitinylation of the Cytosolic Domain of a Type I Membrane Protein Is Not Required to Initiate Its Dislocation from the Endoplasmic Reticulum. Journal of Biological Chemistry, 2003, 278, 34804-34811.	3.4	43
43	Protein Unfolding Is Not a Prerequisite for Endoplasmic Reticulum-to-Cytosol Dislocation. Journal of Biological Chemistry, 2003, 278, 6664-6672.	3.4	85
44	US2, a Human Cytomegalovirus-encoded Type I Membrane Protein, Contains a Non-cleavable Amino-terminal Signal Peptide. Journal of Biological Chemistry, 2002, 277, 11306-11313.	3.4	33
45	Human Cytomegalovirus Gene Products US2 and US11 Differ in Their Ability To Attack Major Histocompatibility Class I Heavy Chains in Dendritic Cells. Journal of Virology, 2002, 76, 5043-5050.	3.4	65
46	The Human Cytomegalovirus US10 Gene Product Delays Trafficking of Major Histocompatibility Complex Class I Molecules. Journal of Virology, 2002, 76, 11753-11756.	3.4	89
47	Membrane-specific, Host-derived Factors Are Required for US2- and US11-mediated Degradation of Major Histocompatibility Complex Class I Molecules. Journal of Biological Chemistry, 2002, 277, 3258-3267.	3.4	57
48	Visualization of the ER-to-cytosol dislocation reaction of a type I membrane protein. EMBO Journal, 2002, 21, 1041-1053.	7.8	77
49	Extended peptide-based inhibitors efficiently target the proteasome and reveal overlapping specificities of the catalytic Î ² -subunits. Chemistry and Biology, 2001, 8, 913-929.	6.0	149
50	Virus subversion of immunity: a structural perspective. Current Opinion in Immunology, 2001, 13, 442-450.	5.5	53
51	Signal peptide cleavage of a type I membrane protein, HCMV US11, is dependent on its membrane anchor. EMBO Journal, 2001, 20, 1573-1582.	7.8	60
52	Human Cytomegalovirus US2 Endoplasmic Reticulum-Lumenal Domain Dictates Association with Major Histocompatibility Complex Class I in a Locus-Specific Manner. Journal of Virology, 2001, 75, 5197-5204.	3.4	104
53	Antigen presentation subverted: Structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6794-6799.	7.1	136
54	Down-regulation of MHC class I antigen presentation by HCMV; lessons for tumor immunology. Immunological Investigations, 2000, 29, 97-100.	2.0	39

DOMENICO TORTORELLA

#	Article	IF	CITATIONS
55	Viral Subversion of the Immune System. Annual Review of Immunology, 2000, 18, 861-926.	21.8	764
56	HLA-G and HLA-C at the feto–maternal interface: lessons learned from pathogenic viruses. Seminars in Cancer Biology, 1999, 9, 37-46.	9.6	30
57	Viral immunoevasive strategies and trophoblast class I major histocompatibility complex antigens. Journal of Reproductive Immunology, 1999, 43, 243-251.	1.9	7
58	Dislocation of Type I Membrane Proteins from the ER to the Cytosol Is Sensitive to Changes in Redox Potential. Journal of Cell Biology, 1998, 142, 365-376.	5.2	122
59	Trophoblast Class I Major Histocompatibility Complex (MHC) Products Are Resistant to Rapid Degradation Imposed by the Human Cytomegalovirus (HCMV) Gene Products US2 and US11. Journal of Experimental Medicine, 1998, 188, 497-503.	8.5	138
60	Covalent modification of the active site threonine of proteasomal subunits and the Escherichia coli homolog HslV by a new class of inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6629-6634.	7.1	449
61	Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunology Letters, 1997, 57, 213-216.	2.5	88
62	Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature, 1996, 384, 432-438.	27.8	1,054
63	Immunochemical Analysis of the Structure of Diphtheria Toxin Shows All Three Domains Undergo Structural Changes at Low pH. Journal of Biological Chemistry, 1995, 270, 27439-27445.	3.4	13
64	Immunochemical Analysis Shows All Three Domains of Diphtheria Toxin Penetrate across Model Membranes. Journal of Biological Chemistry, 1995, 270, 27446-27452.	3.4	16
65	Simple centrifugation method for efficient pelleting of both small and large unilamellar vesicles that allows convenient measurement of protein binding. Biochemistry, 1993, 32, 9181-9188.	2.5	28