
Des Raymond Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7641169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Melatonin-based therapeutics for atherosclerotic lesions and beyond: Focusing on macrophage mitophagy. Pharmacological Research, 2022, 176, 106072.	3.1	20
2	Targeting Wnt/tenascin C-mediated cross talk between pancreatic cancer cells and stellate cells via activation ofÂtheÂmetastasis suppressor NDRG1. Journal of Biological Chemistry, 2022, 298, 101608.	1.6	20
3	Ferritinophagy and α-Synuclein: Pharmacological Targeting of Autophagy to Restore Iron Regulation in Parkinson's Disease. International Journal of Molecular Sciences, 2022, 23, 2378.	1.8	10
4	The thiosemicarbazone, DpC, broadly synergizes with multiple anti-cancer therapeutics and demonstrates temperature- and energy-dependent uptake by tumor cells. Biochimica Et Biophysica Acta - General Subjects, 2022, 1866, 130152.	1.1	8
5	Breaking the cycle: Targeting of NDRG1 to inhibit biâ€directional oncogenic crossâ€ŧalk between pancreatic cancer and stroma. FASEB Journal, 2021, 35, e21347.	0.2	23
6	CD63 is regulated by iron via the IRE-IRP system and is important for ferritin secretion by extracellular vesicles. Blood, 2021, 138, 1490-1503.	0.6	57
7	Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends in Endocrinology and Metabolism, 2021, 32, 444-462.	3.1	148
8	Calcium channels and iron metabolism: A redox catastrophe in Parkinson's disease and an innovative path to novel therapies?. Redox Biology, 2021, 47, 102136.	3.9	4
9	The Relationship of Glutathione-S-Transferase and Multi-Drug Resistance-Related Protein 1 in Nitric Oxide (NO) Transport and Storage. Molecules, 2021, 26, 5784.	1.7	3
10	The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells, 2021, 10, 2382.	1.8	29
11	Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biology, 2021, 46, 102038.	3.9	12
12	Innovative therapies for neuroblastoma: The surprisingly potent role of iron chelation in up-regulating metastasis and tumor suppressors and down-regulating the key oncogene, N-myc. Pharmacological Research, 2021, 173, 105889.	3.1	20
13	The metastasis suppressor NDRG1 directly regulates androgen receptor signaling in prostate cancer. Journal of Biological Chemistry, 2021, 297, 101414.	1.6	18
14	Pharmacological targeting and the diverse functions of the metastasis suppressor, NDRG1, in cancer. Free Radical Biology and Medicine, 2020, 157, 154-175.	1.3	47
15	Ascorbate and Tumor Cell Iron Metabolism: The Evolving Story and Its Link to Pathology. Antioxidants and Redox Signaling, 2020, 33, 816-838.	2.5	3
16	Novel multifunctional iron chelators of the aroyl nicotinoyl hydrazone class that markedly enhance cellular NAD + /NADH ratios. British Journal of Pharmacology, 2020, 177, 1967-1987.	2.7	7
17	The anti-tumor agent, Dp44mT, promotes nuclear translocation of TFEB via inhibition of the AMPK-mTORC1 axis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165970.	1.8	7
18	The new role of poly (rC)-binding proteins as iron transport chaperones: Proteins that could couple with inter-organelle interactions to safely traffic iron. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129685.	1.1	34

#	Article	IF	CITATIONS
19	Unique targeting of androgenâ€dependent and â€independent AR signaling in prostate cancer to overcome androgen resistance. FASEB Journal, 2020, 34, 11511-11528.	0.2	25
20	Antioxidant defense mechanisms and its dysfunctional regulation in the mitochondrial disease, Friedreich's ataxia. Free Radical Biology and Medicine, 2020, 159, 177-188.	1.3	16
21	The Role of Extracellular Proteases in Tumor Progression and the Development of Innovative Metal Ion Chelators That Inhibit Their Activity. International Journal of Molecular Sciences, 2020, 21, 6805.	1.8	16
22	Novel Thiosemicarbazones Sensitize Pediatric Solid Tumor Cell-Types to Conventional Chemotherapeutics through Multiple Molecular Mechanisms. Cancers, 2020, 12, 3781.	1.7	4
23	Acireductone dioxygenase 1 (ADI1) is regulated by cellular iron by a mechanism involving the iron chaperone, PCBP1, with PCBP2 acting as a potential co-chaperone. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165844.	1.8	8
24	Treatment of dilated cardiomyopathy in a mouse model of Friedreich's ataxia using N-acetylcysteine and identification of alterations in microRNA expression that could be involved in its pathogenesis. Pharmacological Research, 2020, 159, 104994.	3.1	13
25	The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129650.	1.1	22
26	The growing evidence for targeting P-glycoprotein in lysosomes to overcome resistance. Future Medicinal Chemistry, 2020, 12, 473-477.	1.1	16
27	During mitosis ZEB1 "switches―from being a chromatin-bound epithelial gene repressor, to become a microtubule-associated protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118673.	1.9	6
28	Thiosemicarbazones suppress expression of the c-Met oncogene by mechanisms involving lysosomal degradation and intracellular shedding. Journal of Biological Chemistry, 2020, 295, 481-503.	1.6	18
29	Overcoming tamoxifen resistance in oestrogen receptorâ€positive breast cancer using the novel thiosemicarbazone antiâ€cancer agent, <scp>DpC</scp> . British Journal of Pharmacology, 2020, 177, 2365-2380.	2.7	21
30	The potential of the novel NAD+ supplementing agent, SNH6, as a therapeutic strategy for the treatment of Friedreich's ataxia. Pharmacological Research, 2020, 155, 104680.	3.1	6
31	NDRG1 suppresses basal and hypoxia-induced autophagy at both the initiation and degradation stages and sensitizes pancreatic cancer cells to lysosomal membrane permeabilization. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129625.	1.1	13
32	Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. ELife, 2020, 9, .	2.8	68
33	Synthesis, Characterization, and in Vitro Anticancer Activity of Copper and Zinc Bis(Thiosemicarbazone) Complexes. Inorganic Chemistry, 2019, 58, 13709-13723.	1.9	78
34	How iron is handled in the course of heme catabolism: Integration of heme oxygenase with intracellular iron transport mechanisms mediated by poly (rC)-binding protein-2. Archives of Biochemistry and Biophysics, 2019, 672, 108071.	1.4	15
35	Development of pyridyl thiosemicarbazones as highly potent agents for the treatment of malaria after oral administration. Journal of Antimicrobial Chemotherapy, 2019, 74, 2965-2973.	1.3	9
36	The metastasis suppressor NDRG1 down-regulates the epidermal growth factor receptor via a lysosomal mechanism by up-regulating mitogen-inducible gene 6. Journal of Biological Chemistry, 2019, 294, 4045-4064.	1.6	33

#	Article	IF	CITATIONS
37	The biochemical and molecular mechanisms involved in the role of tumor micro-environment stress in development of drug resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1390-1397.	1.1	26
38	The Role of the Antioxidant Response in Mitochondrial Dysfunction in Degenerative Diseases: Cross-Talk between Antioxidant Defense, Autophagy, and Apoptosis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-26.	1.9	92
39	Exploiting Cancer Metal Metabolism using Anti-Cancer Metal- Binding Agents. Current Medicinal Chemistry, 2019, 26, 302-322.	1.2	19
40	Tumor-induced neoangiogenesis and receptor tyrosine kinases – Mechanisms and strategies for acquired resistance. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1217-1225.	1.1	9
41	Novel SPME fibers based on a plastic support for determination of plasma protein binding of thiosemicarbazone metal chelators: a case example of DpC, an anti-cancer drug that entered clinical trials. Analytical and Bioanalytical Chemistry, 2019, 411, 2383-2394.	1.9	5
42	Two mechanisms involving the autophagic and proteasomal pathways process the metastasis suppressor protein, N-myc downstream regulated gene 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1361-1378.	1.8	12
43	E6AP Promotes a Metastatic Phenotype in Prostate Cancer. IScience, 2019, 22, 1-15.	1.9	11
44	The metastasis suppressor, NDRG1, attenuates oncogenic TGF-β and NF-κB signaling to enhance membrane E-cadherin expression in pancreatic cancer cells. Carcinogenesis, 2019, 40, 805-818.	1.3	45
45	Pharmacological targeting of mitochondria in cancer stem cells: An ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacological Research, 2019, 139, 298-313.	3.1	55
46	Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxidants and Redox Signaling, 2019, 30, 1096-1123.	2.5	21
47	Ironing out the role of the cyclin-dependent kinase inhibitor, p21 in cancer: Novel iron chelating agents to target p21 expression and activity. Free Radical Biology and Medicine, 2019, 133, 276-294.	1.3	27
48	Identification of differential phosphorylation and sub-cellular localization of the metastasis suppressor, NDRG1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2644-2663.	1.8	36
49	Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones. Journal of Biological Chemistry, 2018, 293, 3562-3587.	1.6	36
50	Novel chelators based on adamantane-derived semicarbazones and hydrazones that target multiple hallmarks of Alzheimer's disease. Dalton Transactions, 2018, 47, 7190-7205.	1.6	30
51	Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21 CIP1/WAF1 , by the chelator, Dp44mT. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 761-774.	1.1	10
52	Mitochondrial dysfunction in the neuro-degenerative and cardio-degenerative disease, Friedreich's ataxia. Neurochemistry International, 2018, 117, 35-48.	1.9	38
53	Coupling of the polyamine and iron metabolism pathways in the regulation of proliferation: Mechanistic links to alterations in key polyamine biosynthetic and catabolic enzymes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2793-2813.	1.8	41
54	The old and new biochemistry of polyamines. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2053-2068.	1.1	145

#	Article	IF	CITATIONS
55	The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacological Research, 2017, 119, 118-127.	3.1	24
56	Novel Thiosemicarbazones Inhibit Lysine-Rich Carcinoembryonic Antigen–Related Cell Adhesion Molecule 1 (CEACAM1) Coisolated (LYRIC) and the LYRIC-Induced Epithelial-Mesenchymal Transition via Upregulation of N-Myc Downstream-Regulated Gene 1 (NDRG1). Molecular Pharmacology, 2017, 91, 499-517.	1.0	22
57	Non-thermal plasma induces a stress response in mesothelioma cells resulting in increased endocytosis, lysosome biogenesis and autophagy. Free Radical Biology and Medicine, 2017, 108, 904-917.	1.3	77
58	Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. Journal of Biological Chemistry, 2017, 292, 12772-12782.	1.6	48
59	Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacological Research, 2017, 115, 275-287.	3.1	56
60	Molecular Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2017, 187, 2858-2875.	1.9	51
61	A novel class of thiosemicarbazones show multi-functional activity for the treatment of Alzheimer's disease. European Journal of Medicinal Chemistry, 2017, 139, 612-632.	2.6	64
62	The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. Journal of Biological Chemistry, 2017, 292, 13205-13229.	1.6	52
63	Bonnie and Clyde: Vitamin C and iron are partners in crime in iron deficiency anaemia and its potential role in the elderly. Aging, 2016, 8, 1150-1152.	1.4	16
64	PGRMC1 regulation by phosphorylation: potential new insights in controlling biological activity. Oncotarget, 2016, 7, 50822-50827.	0.8	35
65	Letter to the Editor: "Analysis of the Interaction of Dp44mT with Human Serum Albumin and Calf Thymus DNA Using Molecular Docking and Spectroscopic Techniquesâ€: International Journal of Molecular Sciences, 2016, 17, 1916.	1.8	3
66	A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death and Disease, 2016, 7, e2510-e2510.	2.7	72
67	Lipid-Based Drug Delivery Systems in Cancer Therapy: What Is Available and What Is Yet to Come. Pharmacological Reviews, 2016, 68, 701-787.	7.1	537
68	Targeting autophagy in antitumor agent design: furthering the â€~lysosomal love' strategy. Future Medicinal Chemistry, 2016, 8, 727-729.	1.1	0
69	Mechanism of the induction of endoplasmic reticulum stress by the anti-cancer agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT): Activation of PERK/eIF2α, IRE1α, ATF6 and calmodulin kinase. Biochemical Pharmacology, 2016, 109, 27-47.	2.0	36
70	Zinc(II)–Thiosemicarbazone Complexes Are Localized to the Lysosomal Compartment Where They Transmetallate with Copper Ions to Induce Cytotoxicity. Journal of Medicinal Chemistry, 2016, 59, 4965-4984.	2.9	148
71	Targeting the Metastasis Suppressor, N-Myc Downstream Regulated Gene-1, with Novel Di-2-Pyridylketone Thiosemicarbazones: Suppression of Tumor Cell Migration and Cell-Collagen Adhesion by Inhibiting Focal Adhesion Kinase/Paxillin Signaling. Molecular Pharmacology, 2016, 89, 521-540.	1.0	45
72	Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter. Journal of Biological Chemistry, 2016, 291, 3796-3820.	1.6	51

#	Article	IF	CITATIONS
73	Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radical Biology and Medicine, 2016, 96, 432-445.	1.3	52
74	Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clinical Science, 2016, 130, 853-870.	1.8	45
75	Structure–Activity Relationships of Di-2-pyridylketone, 2-Benzoylpyridine, and 2-Acetylpyridine Thiosemicarbazones for Overcoming Pgp-Mediated Drug Resistance. Journal of Medicinal Chemistry, 2016, 59, 8601-8620.	2.9	82
76	A Nitric Oxide Storage and Transport System That Protects Activated Macrophages from Endogenous Nitric Oxide Cytotoxicity. Journal of Biological Chemistry, 2016, 291, 27042-27061.	1.6	32
77	The Anticancer Agent, Di-2-Pyridylketone 4,4-Dimethyl-3-Thiosemicarbazone (Dp44mT), Up-Regulates the AMPK-Dependent Energy Homeostasis Pathway in Cancer Cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2916-2933.	1.9	36
78	The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 339-349.	3.3	63
79	The novel thiosemicarbazone, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), inhibits neuroblastoma growth in vitro and in vivo via multiple mechanisms. Journal of Hematology and Oncology, 2016, 9, 98.	6.9	94
80	Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT). Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1665-1681.	1.9	34
81	Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics, 2016, 8, 874-886.	1.0	105
82	Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells. Archives of Biochemistry and Biophysics, 2016, 605, 109-116.	1.4	24
83	Iron Export through the Transporter Ferroportin 1 Is Modulated by the Iron Chaperone PCBP2. Journal of Biological Chemistry, 2016, 291, 17303-17318.	1.6	115
84	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
85	The Metastasis Suppressor, N-MYC Downstream-regulated Gene-1 (NDRG1), Down-regulates the ErbB Family of Receptors to Inhibit Downstream Oncogenic Signaling Pathways. Journal of Biological Chemistry, 2016, 291, 1029-1052.	1.6	65
86	Novel Mechanism of Cytotoxicity for the Selective Selenosemicarbazone, 2-Acetylpyridine 4,4-Dimethyl-3-selenosemicarbazone (Ap44mSe): Lysosomal Membrane Permeabilization. Journal of Medicinal Chemistry, 2016, 59, 294-312.	2.9	39
87	Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 770-784.	1.9	148
88	Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 727-748.	1.9	111
89	Kinetico-mechanistic studies on methemoglobin generation by biologically active thiosemicarbazone iron(III) complexes. Journal of Inorganic Biochemistry, 2016, 162, 326-333.	1.5	20
90	Copper that cancer with lysosomal love!. Aging, 2016, 8, 210-211.	1.4	10

#	Article	IF	CITATIONS
91	Targeting cancer by binding iron: Dissecting cellular signaling pathways. Oncotarget, 2015, 6, 18748-18779.	0.8	137
92	Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation. Nutrients, 2015, 7, 2274-2296.	1.7	103
93	An updated h-index measures both the primary and total scientific output of a researcher. Discoveries, 2015, 3, e50.	1.5	10
94	The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget, 2015, 6, 8851-8874.	0.8	64
95	Making a case for albumin – a highly promising drug-delivery system. Future Medicinal Chemistry, 2015, 7, 553-556.	1.1	17
96	Synthesis and analysis of novel analogues of dexrazoxane and its open-ring hydrolysis product for protection against anthracycline cardiotoxicity in vitro and in vivo. Toxicology Research, 2015, 4, 1098-1114.	0.9	20
97	Novel Thiosemicarbazones Regulate the Signal Transducer and Activator of Transcription 3 (STAT3) Pathway: Inhibition of Constitutive and Interleukin 6–Induced Activation by Iron Depletion. Molecular Pharmacology, 2015, 87, 543-560.	1.0	37
98	The use of iron chelators in biocidal compositions: evaluation of patent, WO2014059417A1. Expert Opinion on Therapeutic Patents, 2015, 25, 367-372.	2.4	1
99	Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Multidrug Resistance by a Novel Mechanism Involving the Hijacking of Lysosomal P-Glycoprotein (Pgp). Journal of Biological Chemistry, 2015, 290, 9588-9603.	1.6	103
100	Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization. Journal of Inorganic Biochemistry, 2015, 152, 20-37.	1.5	64
101	The renaissance of polypharmacology in the development of anti-cancer therapeutics: Inhibition of the "Triad of Death―in cancer by Di-2-pyridylketone thiosemicarbazones. Pharmacological Research, 2015, 100, 255-260.	3.1	127
102	Adenosine Monophosphate–Activated Kinase and Its Key Role in Catabolism: Structure, Regulation, Biological Activity, and Pharmacological Activation. Molecular Pharmacology, 2015, 87, 363-377.	1.0	74
103	In Vitro Characterization of the Pharmacological Properties of the Anti-Cancer Chelator, Bp4eT, and Its Phase I Metabolites. PLoS ONE, 2015, 10, e0139929.	1.1	7
104	Potentiating the cellular targeting and anti-tumor activity of Dp44mT <i>via</i> binding to human serum albumin: two saturable mechanisms of Dp44mT uptake by cells. Oncotarget, 2015, 6, 10374-10398.	0.8	28
105	Differential targeting of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by chelators with anti-proliferative activity in a range of tumor cell-types. Oncotarget, 2015, 6, 29694-29711.	0.8	15
106	The metastasis suppressor, NDRG1, inhibits "stemness―of colorectal cancer <i>via</i> down-regulation of nuclear β-catenin and CD44. Oncotarget, 2015, 6, 33893-33911.	0.8	40
107	The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget, 2015, 6, 35522-35541.	0.8	43
108	Novel and potent anti-tumor and anti-metastatic di-2-pyridylketone thiosemicarbazones demonstrate marked differences in pharmacology between the first and second generation lead agents. Oncotarget, 2015, 6, 42411-42428.	0.8	34

#	Article	IF	CITATIONS
109	IRON METABOLISM AND AUTOPHAGY: A POORLY EXPLORED RELATIONSHIP THAT HAS IMPORTANT CONSEQUENCES FOR HEALTH AND DISEASE. Nagoya Journal of Medical Science, 2015, 77, 1-6.	0.6	17
110	Quantitative Analysis of the Anti-Proliferative Activity of Combinations of Selected Iron-Chelating Agents and Clinically Used Anti-Neoplastic Drugs. PLoS ONE, 2014, 9, e88754.	1.1	23
111	The Anticancer Agent Di-2-pyridylketone 4,4-Dimethyl-3-thiosemicarbazone (Dp44mT) Overcomes Prosurvival Autophagy by Two Mechanisms. Journal of Biological Chemistry, 2014, 289, 33568-33589.	1.6	59
112	Unraveling the mysteries of serum albuminââ,¬â€nore than just a serum protein. Frontiers in Physiology, 2014, 5, 299.	1.3	488
113	Structure-Activity Relationships of Novel Salicylaldehyde Isonicotinoyl Hydrazone (SIH) Analogs: Iron Chelation, Anti-Oxidant and Cytotoxic Properties. PLoS ONE, 2014, 9, e112059.	1.1	15
114	Chaperone turns gatekeeper: PCBP2 and DMT1 form an iron-transport pipeline. Biochemical Journal, 2014, 462, e1-e3.	1.7	17
115	Can we target the α2-macroglobulin–hepcidin interaction to treat pathologic hypoferremia?. Future Medicinal Chemistry, 2014, 6, 13-16.	1.1	0
116	NDRG1 as a molecular target to inhibit the epithelial–mesenchymal transition: the case for developing inhibitors of metastasis. Future Medicinal Chemistry, 2014, 6, 1241-1244.	1.1	9
117	The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells. Journal of Biological Chemistry, 2014, 289, 9692-9709.	1.6	83
118	The Progression of Cardiomyopathy in the Mitochondrial Disease, Friedreich's Ataxia. , 2014, , 349-377.		0
119	Expanding horizons in iron chelation and the treatment of cancer: Role of iron in the regulation of ER stress and the epithelial–mesenchymal transition. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 166-181.	3.3	50
120	Kinetic studies on the oxidation of oxyhemoglobin by biologically active iron thiosemicarbazone complexes: relevance to iron-chelator-induced methemoglobinemia. Journal of Biological Inorganic Chemistry, 2014, 19, 349-357.	1.1	11
121	Potent Antimycobacterial Activity of the Pyridoxal Isonicotinoyl Hydrazone Analog 2-Pyridylcarboxaldehyde Isonicotinoyl Hydrazone: A Lipophilic Transport Vehicle for Isonicotinic Acid Hydrazide. Molecular Pharmacology, 2014, 85, 269-278.	1.0	33
122	Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1845, 1-19.	3.3	88
123	Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: Structure–activity relationship studies on their anti-proliferative and iron chelation efficacy. Journal of Inorganic Biochemistry, 2014, 141, 43-54.	1.5	27
124	The active role of vitamin C in mammalian iron metabolism: Much more than just enhanced iron absorption!. Free Radical Biology and Medicine, 2014, 75, 69-83.	1.3	178
125	Gene of the month: <i>BECN1</i> . Journal of Clinical Pathology, 2014, 67, 656-660.	1.0	57
126	AMP kinase (<i>PRKAA1</i>). Journal of Clinical Pathology, 2014, 67, 758-763.	1.0	51

#	Article	IF	CITATIONS
127	Gene of the month: Interleukin 6 (IL-6). Journal of Clinical Pathology, 2014, 67, 932-937.	1.0	106
128	The metastasis suppressor, NDRG1, modulates β-Catenin phosphorylation and nuclear translocation by mechanisms involving FRAT1 and PAK4. Journal of Cell Science, 2014, 127, 3116-30.	1.2	93
129	Simultaneous determination of the novel thiosemicarbazone antiâ€cancer agent, Bp4eT, and its main phase I metabolites in plasma: Application to a pilot pharmacokinetic study in rats. Biomedical Chromatography, 2014, 28, 621-629.	0.8	7
130	Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2- <i>c</i>]quinoline—Piperazine Hybrids. Inorganic Chemistry, 2014, 53, 6934-6943.	1.9	27
131	Exploring the Anti-Cancer Activity of Novel Thiosemicarbazones Generated through the Combination of Retro-Fragments: Dissection of Critical Structure-Activity Relationships. PLoS ONE, 2014, 9, e110291.	1.1	61
132	Chelators as Anti-Cancer Drugs. , 2014, , 911-916.		0
133	Identification of in vitro metabolites of the novel anti-tumor thiosemicarbazone, DpC, using ultra-high performance liquid chromatography–quadrupole-time-of-flight mass spectrometry. Analytical and Bioanalytical Chemistry, 2013, 405, 1651-1661.	1.9	6
134	Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: Novel structure–activity relationships underpinning their anti-proliferative and chelation efficacy. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 967-974.	1.0	35
135	Molecular and Functional Alterations in a Mouse Cardiac Model of Friedreich Ataxia. American Journal of Pathology, 2013, 183, 745-757.	1.9	62
136	Molecular Pharmacology of ABCG2 and Its Role in Chemoresistance. Molecular Pharmacology, 2013, 84, 655-669.	1.0	180
137	Hepcidin Bound to α2-Macroglobulin Reduces Ferroportin-1 Expression and Enhances Its Activity at Reducing Serum Iron Levels. Journal of Biological Chemistry, 2013, 288, 25450-25465.	1.6	22
138	Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1527-1541.	1.9	53
139	Structure–activity studies of 4-phenyl-substituted 2′-benzoylpyridine thiosemicarbazones with potent and selective anti-tumour activity. Organic and Biomolecular Chemistry, 2013, 11, 6414.	1.5	22
140	Anti-plasmodial activity of aroylhydrazone and thiosemicarbazone iron chelators: Effect on erythrocyte membrane integrity, parasite development and the intracellular labile iron pool. Journal of Inorganic Biochemistry, 2013, 129, 43-51.	1.5	26
141	P-glycoprotein Mediates Drug Resistance via a Novel Mechanism Involving Lysosomal Sequestration. Journal of Biological Chemistry, 2013, 288, 31761-31771.	1.6	164
142	Biochemistry of cardiomyopathy in the mitochondrial disease Friedreich's ataxia. Biochemical Journal, 2013, 453, 321-336.	1.7	19
143	Novel Chelators for Cancer Treatment: Where Are We Now?. Antioxidants and Redox Signaling, 2013, 18, 973-1006.	2.5	160
144	Targeting the Metastasis Suppressor, NDRG1, Using Novel Iron Chelators: Regulation of Stress Fiber-Mediated Tumor Cell Migration via Modulation of the ROCK1/pMLC2 Signaling Pathway. Molecular Pharmacology, 2013, 83, 454-469.	1.0	90

#	Article	IF	CITATIONS
145	Cytosolic phospholipase A2α sustains pAKT, pERK and AR levels in PTEN-null/mutated prostate cancer cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1146-1157.	1.2	12
146	The Iron-Regulated Metastasis Suppressor NDRG1 Targets NEDD4L, PTEN, and SMAD4 and Inhibits the PI3K and Ras Signaling Pathways. Antioxidants and Redox Signaling, 2013, 18, 874-887.	2.5	151
147	Alkyl Substituted 2′-Benzoylpyridine Thiosemicarbazone Chelators with Potent and Selective Anti-Neoplastic Activity: Novel Ligands that Limit Methemoglobin Formation. Journal of Medicinal Chemistry, 2013, 56, 357-370.	2.9	56
148	Hepcidin, show some self-control! How the hormone of iron metabolism regulates its own expression. Biochemical Journal, 2013, 452, e3-e5.	1.7	6
149	The Iron Chelator, Deferasirox, as a Novel Strategy for Cancer Treatment: Oral Activity Against Human Lung Tumor Xenografts and Molecular Mechanism of Action. Molecular Pharmacology, 2013, 83, 179-190.	1.0	106
150	Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors. Carcinogenesis, 2013, 34, 1943-1954.	1.3	117
151	The redox-active, anti-cancer drug Dp44mT inhibits T-cell activation and CD25 through a copper-dependent mechanism. Redox Report, 2013, 18, 48-50.	1.4	3
152	Proteolytic cleavage and truncation of NDRG1Âin human prostate cancer cells, but not normal prostate epithelial cells. Bioscience Reports, 2013, 33, .	1.1	31
153	The role of NDRG1 in the pathology and potential treatment of human cancers. Journal of Clinical Pathology, 2013, 66, 911-917.	1.0	72
154	Cellular Uptake of the Antitumor Agent Dp44mT Occurs via a Carrier/Receptor-Mediated Mechanism. Molecular Pharmacology, 2013, 84, 911-924.	1.0	19
155	Dp44mT targets the AKT, TGF-β and ERK pathways via the metastasis suppressor NDRG1 in normal prostate epithelial cells and prostate cancer cells. British Journal of Cancer, 2013, 108, 409-419.	2.9	100
156	N-myc Downstream Regulated 1 (NDRG1) Is Regulated by Eukaryotic Initiation Factor 3a (eIF3a) during Cellular Stress Caused by Iron Depletion. PLoS ONE, 2013, 8, e57273.	1.1	59
157	Iron Chelation: Inhibition of Key Signaling Pathways in the Induction of the Epithelial Mesenchymal Transition in Pancreatic Cancer and Other Tumors. Critical Reviews in Oncogenesis, 2013, 18, 409-434.	0.2	15
158	Identification of nonferritin mitochondrial iron deposits in a mouse model of Friedreich ataxia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20590-20595.	3.3	85
159	Nitric Oxide Storage and Transport in Cells Are Mediated by Glutathione S-Transferase P1-1 and Multidrug Resistance Protein 1 via Dinitrosyl Iron Complexes. Journal of Biological Chemistry, 2012, 287, 607-618.	1.6	50
160	ERp29 induces breast cancer cell growth arrest and survival through modulation of activation of p38 and upregulation of ER stress protein p58IPK. Laboratory Investigation, 2012, 92, 200-213.	1.7	29
161	Iron Chelators for the Treatment of Cancer. Current Medicinal Chemistry, 2012, 19, 2689-2702.	1.2	158
162	Development of a sensitive HPLC method to measure in vitro permeability of E- and Z-isomeric forms of thiosemicarbazones in Caco-2 monolayers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 906, 25-32.	1.2	13

#	Article	IF	CITATIONS
163	The Iron Chelators Dp44mT and DFO Inhibit TGF-β-induced Epithelial-Mesenchymal Transition via Up-Regulation of N-Myc Downstream-regulated Gene 1 (NDRG1). Journal of Biological Chemistry, 2012, 287, 17016-17028.	1.6	213
164	Methemoglobin Formation by Triapine, Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), and Other Anticancer Thiosemicarbazones: Identification of Novel Thiosemicarbazones and Therapeutics That Prevent This Effect. Molecular Pharmacology, 2012, 82, 105-114.	1.0	54
165	Melanotransferrin: Search for a function. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 237-243.	1.1	46
166	Synthesis and characterization of quinoline-based thiosemicarbazones and correlation of cellular iron-binding efficacy to anti-tumor efficacy. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5527-5531.	1.0	61
167	Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. Journal of Medicinal Chemistry, 2012, 55, 7230-7244.	2.9	165
168	Nitrogen Monoxide (NO) Storage and Transport by Dinitrosyl-Dithiol-Iron Complexes: Long-lived NO That Is Trafficked by Interacting Proteins. Journal of Biological Chemistry, 2012, 287, 6960-6968.	1.6	60
169	Heterocyclic dithiocarbazate iron chelators: Fe coordination chemistry and biological activity. Dalton Transactions, 2012, 41, 6536.	1.6	49
170	LC-MS/MS identification of the principal in vitro and in vivo phase I metabolites of the novel thiosemicarbazone anti-cancer drug, Bp4eT. Analytical and Bioanalytical Chemistry, 2012, 403, 309-321.	1.9	16
171	Bp44mT: an orally active iron chelator of the thiosemicarbazone class with potent antiâ€ŧumour efficacy. British Journal of Pharmacology, 2012, 165, 148-166.	2.7	90
172	Sustained expression of heme oxygenase-1 alters iron homeostasis in nonerythroid cells. Free Radical Biology and Medicine, 2012, 53, 366-374.	1.3	21
173	Investigation of substituted 6-aminohexanoates as skin penetration enhancers. Bioorganic and Medicinal Chemistry, 2012, 20, 86-95.	1.4	6
174	Siderocalin/Lcn2/NGAL/24p3 Does Not Drive Apoptosis Through Gentisic Acid Mediated Iron Withdrawal in Hematopoietic Cell Lines. PLoS ONE, 2012, 7, e43696.	1.1	45
175	Vitamin C regulates iron uptake from transferrin – a novel role for ascorbate in iron metabolism?. FASEB Journal, 2012, 26, 969.14.	0.2	1
176	Chelators to the Rescue: Different Horses for Different Courses!. Chemical Research in Toxicology, 2011, 24, 279-282.	1.7	8
177	Halogenated 2′-Benzoylpyridine Thiosemicarbazone (XBpT) Chelators with Potent and Selective Anti-Neoplastic Activity: Relationship to Intracellular Redox Activity. Journal of Medicinal Chemistry, 2011, 54, 6936-6948.	2.9	51
178	Endoplasmic reticulum protein 29 (ERp29): An emerging role in cancer. International Journal of Biochemistry and Cell Biology, 2011, 43, 33-36.	1.2	49
179	Research Spotlight: Iron chelation: deciphering novel molecular targets for cancer therapy. The tip of the iceberg of a web of iron-regulated molecules. Future Medicinal Chemistry, 2011, 3, 1983-1986.	1.1	5
180	Antitumor Activity of Metal-Chelating Compound Dp44mT Is Mediated by Formation of a Redox-Active Copper Complex That Accumulates in Lysosomes. Cancer Research, 2011, 71, 5871-5880.	0.4	258

Des Raymond Richardson

#	Article	IF	CITATIONS
181	Mitochondrial Mayhem: The Mitochondrion as a Modulator of Iron Metabolism and Its Role in Disease. Antioxidants and Redox Signaling, 2011, 15, 3003-3019.	2.5	84
182	The Medicinal Chemistry of Novel Iron Chelators for the Treatment of Cancer. Current Topics in Medicinal Chemistry, 2011, 11, 483-499.	1.0	69
183	Synthetic and Natural Products as Iron Chelators. Current Topics in Medicinal Chemistry, 2011, 11, 591-607.	1.0	20
184	The Potent and Novel Thiosemicarbazone Chelators Di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone and 2-Benzoylpyridine-4,4-dimethyl-3-thiosemicarbazone Affect Crucial Thiol Systems Required for Ribonucleotide Reductase Activity. Molecular Pharmacology, 2011, 79, 921-931.	1.0	44
185	Novel Thiosemicarbazone Iron Chelators Induce Up-Regulation and Phosphorylation of the Metastasis Suppressor N-myc Down-Stream Regulated Gene 1: A New Strategy for the Treatment of Pancreatic Cancer. Molecular Pharmacology, 2011, 80, 598-609.	1.0	154
186	Cellular Iron Depletion and the Mechanisms Involved in the Iron-dependent Regulation of the Growth Arrest and DNA Damage Family of Genes. Journal of Biological Chemistry, 2011, 286, 35396-35406.	1.6	39
187	Editorial [Hot topic: Metal Chelation (Guest Editors: Paul V. Bernhardt & Des R. Richardson)]. Current Topics in Medicinal Chemistry, 2011, 11, 482-482.	1.0	2
188	Cellular Iron Depletion Stimulates the JNK and p38 MAPK Signaling Transduction Pathways, Dissociation of ASK1-Thioredoxin, and Activation of ASK1. Journal of Biological Chemistry, 2011, 286, 15413-15427.	1.6	95
189	Iron Chelators of the Di-2-pyridylketone Thiosemicarbazone and 2-Benzoylpyridine Thiosemicarbazone Series Inhibit HIV-1 Transcription: Identification of Novel Cellular Targets—Iron, Cyclin-Dependent Kinase (CDK) 2, and CDK9. Molecular Pharmacology, 2011, 79, 185-196.	1.0	62
190	The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms. Carcinogenesis, 2011, 32, 732-740.	1.3	76
191	William Hunter and radioiodination: revolutions in the labelling of proteins with radionuclides of iodine. Biochemical Journal, 2011, 2011, c1-4.	1.7	3
192	William Hunter and radioiodination: Revolutions in the labelling of proteins with radionuclides of iodine. Biochemist, 2011, 33, 34-38.	0.2	8
193	Frataxin, a molecule of mystery: trading stability for function in its iron-binding site. Biochemical Journal, 2010, 426, e1-e3.	1.7	16
194	Conjugates of Desferrioxamine B (DFOB) with Derivatives of Adamantane or with Orally Available Chelators as Potential Agents for Treating Iron Overload. Journal of Medicinal Chemistry, 2010, 53, 1370-1382.	2.9	44
195	The ins and outs of mitochondrial iron-loading: the metabolic defect in Friedreich's ataxia. Journal of Molecular Medicine, 2010, 88, 323-329.	1.7	55
196	Development of an LC–MS/MS method for analysis of interconvertible Z/E isomers of the novel anticancer agent, Bp4eT. Analytical and Bioanalytical Chemistry, 2010, 397, 161-171.	1.9	10
197	The translational regulator elF3a: The tricky elF3 subunit!. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1806, 275-286.	3.3	41
198	The iron complex of Dp44mT is redox-active and induces hydroxyl radical formation: An EPR study. Journal of Inorganic Biochemistry, 2010, 104, 1224-1228.	1.5	59

#	Article	IF	CITATIONS
199	Amphiphilic hyper-branched co-polymer nanoparticles for the controlled delivery of anti-tumor agents. Biomaterials, 2010, 31, 7364-7375.	5.7	44
200	Investigating the anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorganic and Medicinal Chemistry, 2010, 18, 2664-2671.	1.4	44
201	Investigating the activity of 2-substituted alkyl-6-(2,5-dioxopyrrolidin-1-yl)hexanoates as skin penetration enhancers. Bioorganic and Medicinal Chemistry, 2010, 18, 8556-8565.	1.4	8
202	Investigating the Spectrum of Biological Activity of Ring-Substituted Salicylanilides and Carbamoylphenylcarbamates. Molecules, 2010, 15, 8122-8142.	1.7	40
203	Iron Chelator-Mediated Alterations in Gene Expression: Identification of Novel Iron-Regulated Molecules That Are Molecular Targets of Hypoxia-Inducible Factor-11± and p53. Molecular Pharmacology, 2010, 77, 443-458.	1.0	64
204	Membrane Transport and Intracellular Sequestration of Novel Thiosemicarbazone Chelators for the Treatment of Cancer. Molecular Pharmacology, 2010, 78, 675-684.	1.0	17
205	Role of Glutaredoxin1 and Glutathione in Regulating the Activity of the Copper-transporting P-type ATPases, ATP7A and ATP7B. Journal of Biological Chemistry, 2010, 285, 27111-27121.	1.6	69
206	Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10775-10782.	3.3	413
207	Novel Thiosemicarbazones of the ApT and DpT Series and Their Copper Complexes: Identification of Pronounced Redox Activity and Characterization of Their Antitumor Activity. Journal of Medicinal Chemistry, 2010, 53, 5759-5769.	2.9	205
208	Comparison of Clinically Used and Experimental Iron Chelators for Protection against Oxidative Stress-Induced Cellular Injury. Chemical Research in Toxicology, 2010, 23, 1105-1114.	1.7	61
209	Cellular and Molecular Biology of Iron-Binding Proteins. , 2010, , 167-180.		2
210	Elucidation of the mechanism of mitochondrial iron loading in Friedreich's ataxia by analysis of a mouse mutant. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16381-16386.	3.3	197
211	Mitochondrial Iron Metabolism and Sideroblastic Anemia. Acta Haematologica, 2009, 122, 120-133.	0.7	42
212	Pharmacological Targeting of the Integrated Protein Kinase B, Phosphatase and Tensin Homolog Deleted on Chromosome 10, and Transforming Growth Factor-Î ² Pathways in Prostate Cancer. Molecular Pharmacology, 2009, 75, 429-436.	1.0	8
213	Generation and characterization of transgenic mice hyper-expressing melanoma tumour antigen p97 (Melanotransferrin): No overt alteration in phenotype. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1210-1217.	1.9	13
214	Antitumor activity and mechanism of action of the iron chelator, Dp44mT, against leukemic cells. American Journal of Hematology, 2009, 84, 170-176.	2.0	75
215	2-Acetylpyridine Thiosemicarbazones are Potent Iron Chelators and Antiproliferative Agents: Redox Activity, Iron Complexation and Characterization of their Antitumor Activity. Journal of Medicinal Chemistry, 2009, 52, 1459-1470.	2.9	178
216	The Novel Iron Chelator, 2-Pyridylcarboxaldehyde 2-Thiophenecarboxyl Hydrazone, Reduces Catecholamine-Mediated Myocardial Toxicity. Chemical Research in Toxicology, 2009, 22, 208-217.	1.7	27

#	Article	IF	CITATIONS
217	Growth arrest and DNA damage-45 alpha (GADD45α). International Journal of Biochemistry and Cell Biology, 2009, 41, 986-989.	1.2	129
218	The TGF-β, PI3K/Akt and PTEN pathways: established and proposed biochemical integration in prostate cancer. Biochemical Journal, 2009, 417, 411-421.	1.7	86
219	Thiosemicarbazones from the Old to New: Iron Chelators That Are More Than Just Ribonucleotide Reductase Inhibitors. Journal of Medicinal Chemistry, 2009, 52, 5271-5294.	2.9	338
220	Iron Chelators of the Dipyridylketone Thiosemicarbazone Class: Precomplexation and Transmetalation Effects on Anticancer Activity. Journal of Medicinal Chemistry, 2009, 52, 407-415.	2.9	151
221	HPLC methods for determination of two novel thiosemicarbazone anti-cancer drugs (N4mT and) Tj ETQq1 1 0.76 Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 316-322.	84314 rgB 1.2	T /Overlock 1 19
222	Thiosemicarbazones: the new wave in cancer treatment. Future Medicinal Chemistry, 2009, 1, 1143-1151.	1.1	141
223	Hepcidin, the hormone of iron metabolism, is bound specifically to α-2-macroglobulin in blood. Blood, 2009, 113, 6225-6236.	0.6	111
224	Proteomic analysis of hearts from frataxin knockout mice: Marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolism. Proteomics, 2008, 8, 1731-1741.	1.3	37
225	Ancestral roles of eukaryotic frataxin: mitochondrial frataxin function and heterologous expression of hydrogenosomal <i>Trichomonas</i> homologues in trypanosomes. Molecular Microbiology, 2008, 69, 94-109.	1.2	35
226	The iron-regulated metastasis suppressor, Ndrg-1: Identification of novel molecular targets. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 1981-1992.	1.9	70
227	Structure–Activity Relationships of Novel Iron Chelators for the Treatment of Iron Overload Disease: The Methyl Pyrazinylketone Isonicotinoyl Hydrazone Series. Journal of Medicinal Chemistry, 2008, 51, 331-344.	2.9	91
228	Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends in Microbiology, 2008, 16, 261-268.	3.5	126
229	Biochemical and spectroscopic studies of human melanotransferrin (MTf): Electron-paramagnetic resonance evidence for a difference between the iron-binding site of MTf and other transferrins. International Journal of Biochemistry and Cell Biology, 2008, 40, 2739-2745.	1.2	11
230	The nitric oxide–iron interplay in mammalian cells: Transport and storage of dinitrosyl iron complexes. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 638-651.	1.1	59
231	Identification and Characterization of Thiosemicarbazones with Antifungal and Antitumor Effects: Cellular Iron Chelation Mediating Cytotoxic Activity. Chemical Research in Toxicology, 2008, 21, 1878-1889.	1.7	62
232	The MCK mouse heart model of Friedreich's ataxia: Alterations in iron-regulated proteins and cardiac hypertrophy are limited by iron chelation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9757-9762.	3.3	113
233	<i>S</i> -Nitrosylated S100A8: Novel Anti-Inflammatory Properties. Journal of Immunology, 2008, 181, 5627-5636.	0.4	107
234	Inhibition of HIVâ€1 Transcription by DpTâ€based Iron Chelators. FASEB Journal, 2008, 22, 1191.10.	0.2	1

#	Article	IF	CITATIONS
235	Differential regulation of the Menkes and Wilson disease copper transporters by hormones: an integrated model of metal transport in the placenta. Biochemical Journal, 2007, 402, e1-3.	1.7	8
236	Iron chelation regulates cyclin D1 expression via the proteasome: a link to iron deficiency–mediated growth suppression. Blood, 2007, 109, 4045-4054.	0.6	131
237	Iron chelation and regulation of the cell cycle: 2 mechanisms of posttranscriptional regulation of the universal cyclin-dependent kinase inhibitor p21CIP1/WAF1 by iron depletion. Blood, 2007, 110, 752-761.	0.6	121
238	Tuning Cell Cycle Regulation with an Iron Key. Cell Cycle, 2007, 6, 1982-1994.	1.3	206
239	Design, Synthesis, and Characterization of New Iron Chelators with Anti-Proliferative Activity: Structureâ~'Activity Relationships of Novel Thiohydrazone Analogues. Journal of Medicinal Chemistry, 2007, 50, 6212-6225.	2.9	93
240	Future of ToxicologyIron Chelators and Differing Modes of Action and Toxicity:  The Changing Face of Iron Chelation Therapy. Chemical Research in Toxicology, 2007, 20, 715-720.	1.7	125
241	Hydrazone chelators for the treatment of iron overload disorders: iron coordination chemistry and biological activity. Dalton Transactions, 2007, , 3232.	1.6	90
242	DNICs and intracellular iron: nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-mediated glutathione efflux via MRP1. , 2007, , 97-118.		0
243	Investigating biological activity spectrum for novel quinoline analogues. Bioorganic and Medicinal Chemistry, 2007, 15, 1280-1288.	1.4	114
244	Development and validation of HPLC-DAD methods for the analysis of two novel iron chelators with potent anti-cancer activity. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 1343-1351.	1.4	11
245	Iron chelators ICL670 and 311 inhibit HIV-1 transcription. Virology, 2007, 367, 324-333.	1.1	67
246	Iron uptake and metabolism in the new millennium. Trends in Cell Biology, 2007, 17, 93-100.	3.6	343
247	Design, Synthesis, and Characterization of Novel Iron Chelators:  Structureâ dActivity Relationships of the 2-Benzoylpyridine Thiosemicarbazone Series and Their 3-Nitrobenzoyl Analogues as Potent Antitumor Agents. Journal of Medicinal Chemistry, 2007, 50, 3716-3729.	2.9	206
248	Tuning the antiproliferative activity of biologically active iron chelators: characterization of the coordination chemistry and biological efficacy of 2-acetylpyridine and 2-benzoylpyridine hydrazone ligands. Journal of Biological Inorganic Chemistry, 2007, 13, 107-119.	1.1	57
249	Dipyridyl Thiosemicarbazone Chelators with Potent and Selective Antitumor Activity Form Iron Complexes with Redox Activity. Journal of Medicinal Chemistry, 2006, 49, 6510-6521.	2.9	341
250	PCTH: A Novel Orally Active Chelator for the Treatment of Iron Overload Disease. Hemoglobin, 2006, 30, 93-104.	0.4	9
251	Complexes of Cytotoxic Chelators from the Dipyridyl Ketone Isonicotinoyl Hydrazone (HPKIH) Analogues. Inorganic Chemistry, 2006, 45, 752-760.	1.9	71
252	Role of melanotransferrin in iron metabolism: studies using targeted gene disruption in vivo. Blood, 2006, 107, 2599-2601.	0.6	39

#	Article	IF	CITATIONS
253	"lron mining―to inhibit tumor growth. Blood, 2006, 108, 2140-2140.	0.6	0
254	Iron: A New Target for Pharmacological Intervention in Neurodegenerative Diseases. Seminars in Pediatric Neurology, 2006, 13, 186-197.	1.0	105
255	Resistance to the Antineoplastic Agent Gallium Nitrate Results in Marked Alterations in Intracellular Iron and Gallium Trafficking: Identification of Novel Intermediates. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 153-162.	1.3	36
256	Chelators at the Cancer Coalface: Desferrioxamine to Triapine and Beyond. Clinical Cancer Research, 2006, 12, 6876-6883.	3.2	178
257	Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7670-7675.	3.3	117
258	A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14901-14906.	3.3	452
259	The metastasis suppressor, Ndrg-1: a new ally in the fight against cancer. Carcinogenesis, 2006, 27, 2355-2366.	1.3	168
260	Iron trafficking in the mitochondrion: novel pathways revealed by disease. Blood, 2005, 105, 1867-1874.	0.6	260
261	More roles for selenoprotein P: local selenium storage and recycling protein in the brain. Biochemical Journal, 2005, 386, e5-7.	1.7	49
262	Novel diaroylhydrazine ligands as iron chelators: coordination chemistry and biological activity. Journal of Biological Inorganic Chemistry, 2005, 10, 761-777.	1.1	62
263	Molecular Mechanisms of Iron Uptake by Cells and the Use of Iron Chelators for the Treatment of Cancer. Current Medicinal Chemistry, 2005, 12, 2711-2729.	1.2	120
264	Molecular Pharmacology of the Interaction of Anthracyclines with Iron. Molecular Pharmacology, 2005, 68, 261-271.	1.0	185
265	24p3 and Its Receptor: Dawn of a New Iron Age?. Cell, 2005, 123, 1175-1177.	13.5	57
266	Iron-binding drugs targeted to lysosomes: a potential strategy to treat inflammatory lung disorders. Expert Opinion on Investigational Drugs, 2005, 14, 997-1008.	1.9	19
267	The Evolution of Iron Chelators for the Treatment of Iron Overload Disease and Cancer. Pharmacological Reviews, 2005, 57, 547-583.	7.1	641
268	Iron and neoplasia: Serum transferrin receptor and ferritin in prostate cancer. Translational Research, 2004, 144, 173-175.	2.4	7
269	Differential effects on cellular iron metabolism of the physiologically relevant diatomic effector molecules, NO and CO, that bind iron. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1692, 1-15.	1.9	15
270	Novel Chelators for Central Nervous System Disorders That Involve Alterations in the Metabolism of Iron and Other Metal Ions. Annals of the New York Academy of Sciences, 2004, 1012, 326-341.	1.8	103

#	Article	IF	CITATIONS
271	Competing pathways of iron chelation: Angiogenesis or anti-tumor activity: Targeting different molecules to induce specific effects. International Journal of Cancer, 2004, 110, 468-469.	2.3	12
272	Four Cytotoxic N4-Substituted Thiosemicarbazones Derived from 2-Hydroxynaphthalene-1-carboxaldehyde. ChemInform, 2004, 35, no.	0.1	0
273	Iron catalysed assembly of an asymmetric mixed-ligand triple helicate. Dalton Transactions, 2004, , 3342.	1.6	27
274	Potent Antitumor Activity of Novel Iron Chelators Derived from Di-2-Pyridylketone Isonicotinoyl Hydrazone Involves Fenton-Derived Free Radical Generation. Clinical Cancer Research, 2004, 10, 7365-7374.	3.2	113
275	The transferrin homologue, melanotransferrin (p97), is rapidly catabolized by the liver of the rat and does not effectively donate iron to the brain. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2004, 1690, 124-133.	1.8	35
276	Novel aroylhydrazone and thiosemicarbazone iron chelators with anti-malarial activity against chloroquine-resistant and -sensitive parasites. International Journal of Biochemistry and Cell Biology, 2004, 36, 401-407.	1.2	179
277	Novel di-2-pyridyl–derived iron chelators with marked and selective antitumor activity: in vitro and in vivo assessment. Blood, 2004, 104, 1450-1458.	0.6	353
278	Iron chelators with high antiproliferative activity up-regulate the expression of a growth inhibitory and metastasis suppressor gene: a link between iron metabolism and proliferation. Blood, 2004, 104, 2967-2975.	0.6	277
279	Differential effects on cellular iron metabolism of the physiologically relevant diatomic effector molecules, NO and CO, that bind iron. , 2004, 1692, 1-1.		8
280	Interactions of the pyridine-2-carboxaldehyde isonicotinoyl hydrazone class of chelators with iron and DNA: implications for toxicity in the treatment of iron overload disease. Journal of Biological Inorganic Chemistry, 2003, 8, 427-438.	1.1	58
281	Cytotoxic iron chelators: characterization of the structure, solution chemistry and redox activity of ligands and iron complexes of the di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) analogues. Journal of Biological Inorganic Chemistry, 2003, 8, 866-880.	1.1	80
282	The role of hypoxia and nitrogen monoxide in the regulation of cellular iron metabolism. Translational Research, 2003, 141, 289-291.	2.4	4
283	Structural Variations and Formation Constants of First-Row Transition Metal Complexes of Biologically Active Aroylhydrazones. European Journal of Inorganic Chemistry, 2003, 2003, 1145-1156.	1.0	136
284	Iron chelators for the treatment of iron overload disease: Relationship between structure, redox activity, and toxicity. American Journal of Hematology, 2003, 73, 200-210.	2.0	153
285	Four cytotoxic N4-substituted thiosemicarbazones derived from 2-hydroxynaphthalene-1-carboxaldehyde. Acta Crystallographica Section C: Crystal Structure Communications, 2003, 59, o629-o633.	0.4	9
286	Identification of the di-pyridyl ketone isonicotinoyl hydrazone (PKIH) analogues as potent iron chelators and anti-tumour agents. British Journal of Pharmacology, 2003, 138, 819-830.	2.7	94
287	Corrigendum to: A second melanotransferrin gene (MTf2) and a novel protein isoform: explanation for the membrane-bound and soluble forms of melanotransferrin? (FEBS 25737). FEBS Letters, 2003, 547, 234-234.	1.3	0
288	The double-edged nature of using genetic databases: melanotransferrin genes and transcripts. FEBS Letters, 2003, 547, 233-233.	1.3	3

#	Article	IF	CITATIONS
289	β-Thalassaemia: emergence of new and improved iron chelators for treatment. International Journal of Biochemistry and Cell Biology, 2003, 35, 1144-1149.	1.2	32
290	Potent iron chelators increase the mRNA levels of the universal cyclin-dependent kinase inhibitor p21ClP1/WAF1, but paradoxically inhibit its translation: a potential mechanism of cell cycle dysregulation. Carcinogenesis, 2003, 24, 1045-1058.	1.3	36
291	Anthracyclines Induce Accumulation of Iron in Ferritin in Myocardial and Neoplastic Cells: Inhibition of the Ferritin Iron Mobilization Pathway. Molecular Pharmacology, 2003, 63, 849-861.	1.0	73
292	Effects of nitrogen monoxide and carbon monoxide on molecular and cellular iron metabolism: mirror-image effector molecules that target iron. Biochemical Journal, 2003, 369, 429-440.	1.7	84
293	Iron Chelators as Anti-Neoplastic Agents: Current Developments and Promise of the PIH Class of Chelators. Current Medicinal Chemistry, 2003, 10, 1035-1049.	1.2	88
294	Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clinical Cancer Research, 2003, 9, 402-14.	3.2	145
295	Iron uptake by melanoma cells from the soluble form of the transferrin homologue, melanotransferrin. Redox Report, 2002, 7, 279-282.	1.4	4
296	Unexpected Anthracycline-Mediated Alterations in Iron-Regulatory Protein-RNA-Binding Activity: The Iron and Copper Complexes of Anthracyclines Decrease RNA-Binding Activity. Molecular Pharmacology, 2002, 62, 888-900.	1.0	51
297	Novel "hybrid―iron chelators derived from aroylhydrazones and thiosemicarbazones demonstrate selective antiproliferative activity against tumor cells. Blood, 2002, 100, 666-676.	0.6	153
298	Erythroid differentiation and protoporphyrin IX down-regulate frataxin expression in Friend cells: characterization of frataxin expression compared to molecules involved in iron metabolism and hemoglobinization. Blood, 2002, 99, 3813-3822.	0.6	69
299	Deferiprone: greater efficacy at depleting myocardial than hepatic iron?. Lancet, The, 2002, 360, 501-502.	6.3	8
300	A second melanotransferrin gene (MTf2) and a novel protein isoform: explanation for the membrane-bound and soluble forms of melanotransferrin?. FEBS Letters, 2002, 512, 350-352.	1.3	16
301	Ferroportin1: a new iron export molecule?. International Journal of Biochemistry and Cell Biology, 2002, 34, 103-108.	1.2	32
302	The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2002, 1603, 31-46.	3.3	236
303	The iron metabolism of neoplastic cells: alterations that facilitate proliferation?. Critical Reviews in Oncology/Hematology, 2002, 42, 65-78.	2.0	189
304	Iron chelators as therapeutic agents for the treatment of cancer. Critical Reviews in Oncology/Hematology, 2002, 42, 267-281.	2.0	189
305	The mechanism of nitrogen monoxide (NO)-mediated iron mobilization from cells. FEBS Journal, 2002, 269, 3383-3392.	0.2	48
306	The soluble form of the membrane-bound transferrin homologue, melanotransferrin, inefficiently donates iron to cells via nonspecific internalization and degradation of the protein. FEBS Journal, 2002, 269, 4435-4445.	0.2	37

#	Article	IF	CITATIONS
307	Therapeutic Potential of Iron Chelators in Cancer Therapy. Advances in Experimental Medicine and Biology, 2002, 509, 231-249.	0.8	36
308	Frataxin: its role in iron metabolism and the pathogenesis of Friedreich's ataxia. International Journal of Biochemistry and Cell Biology, 2001, 33, 1-10.	1.2	67
309	The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: the mechanisms involved in inhibiting cell-cycle progression. Blood, 2001, 98, 842-850.	0.6	207
310	Unprecedented oxidation of a biologically active aroylhydrazone chelator catalysed by iron(III): serendipitous identification of diacylhydrazine ligands with high iron chelation efficacy. Journal of Biological Inorganic Chemistry, 2001, 6, 801-809.	1.1	48
311	The controversial role of deferiprone in the treatment of thalassemia. Translational Research, 2001, 137, 324-329.	2.4	41
312	Antioxidants Inhibit Indoleamine 2,3-Dioxygenase in IFN-Î ³ -Activated Human Macrophages: Posttranslational Regulation by Pyrrolidine Dithiocarbamate. Journal of Immunology, 2001, 166, 6332-6340.	0.4	111
313	Nitrogen Monoxide (NO) and Glucose. Journal of Biological Chemistry, 2001, 276, 4724-4732.	1.6	44
314	Does free extracellular iron exist in haemochromatosis and other pathologies, and is it redox active?. Clinical Science, 2001, 100, 237.	1.8	5
315	2-Hydroxy-1-naphthaldehyde 2-methylthiosemicarbazone. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 341-342.	0.4	5
316	Complexes of gallium(III) and other metal ions and their potential in the treatment of neoplasia. Expert Opinion on Investigational Drugs, 2000, 9, 1257-1270.	1.9	17
317	The membrane-bound transferrin homologue melanotransferrin: roles other than iron transport?. FEBS Letters, 2000, 483, 11-16.	1.3	47
318	The therapeutic potential of iron chelators. Expert Opinion on Investigational Drugs, 1999, 8, 2141-2158.	1.9	42
319	Crystal and molecular structure of 2-hydroxy-1-naphthaldehyde isonicotinoyl hydrazone (NIH) and its iron(III) complex: an iron chelator with anti-tumour activity. Journal of Biological Inorganic Chemistry, 1999, 4, 266-273.	1.1	131
320	Role of ceruloplasmin and ascorbate in cellular iron release. Translational Research, 1999, 134, 454-465.	2.4	55
321	Development of novel aroylhydrazone ligands for iron chelation therapy: 2-Pyridylcarboxaldehyde isonicotinoyl hydrazone analogs. Translational Research, 1999, 134, 510-521.	2.4	75
322	The effect of intracellular iron concentration and nitrogen monoxide on Nramp2 expression and non-transferrin-bound iron uptake. FEBS Journal, 1999, 263, 41-50.	0.2	79
323	Orally effective iron chelators for the treatment of iron overload disease: The case for a further look at pyridoxal isonicotinoyl hydrazone and its analogs. Translational Research, 1998, 132, 351-352.	2.4	25
324	Pyridoxal isonicotinoyl hydrazone and its analogs: Potential orally effective iron-chelating agents for the treatment of iron overload disease. Translational Research, 1998, 131, 306-315.	2.4	120

#	Article	IF	CITATIONS
325	Development of iron chelators to treat iron overload disease and their use as experimental tools to probe intracellular iron metabolism. , 1998, 58, 299-305.		82
326	Analogues of Pyridoxal Isonicotinoyl Hydrazone (PIH) as Potential Iron Chelators for the Treatment of Neoplasia. Leukemia and Lymphoma, 1998, 31, 47-60.	0.6	24
327	Can Ferritin Provide Iron for Hemoglobin Synthesis?. Blood, 1997, 89, 2611-2612.	0.6	24
328	The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. BBA - Biomembranes, 1997, 1331, 1-40.	7.9	609
329	Effects of Nitrogen Monoxide on Cellular Iron Metabolism. Methods in Neurosciences, 1996, 31, 329-345.	0.5	17
330	Growth of human tumor cell lines in transferrin-free, low-iron medium. In Vitro Cellular and Developmental Biology - Animal, 1995, 31, 625-632.	0.7	21
331	Two saturable mechanisms of iron uptake from transferrin in human melanoma cells: The effect of transferrin concentration, chelators, and metabolic probes on transferrin and iron uptake. Journal of Cellular Physiology, 1994, 161, 160-168.	2.0	84
332	A low-spin iron complex in human melanoma and rat hepatoma cells and a high-spin iron(II) complex in rat hepatoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1135, 154-158.	1.9	17
333	Evaluation of the iron chelation potential of hydrazones of pyridoxal, salicylaldehyde and 2-hydroxy-1-naphthylaldehyde using the hepatocyte in culture. Hepatology, 1992, 15, 492-501.	3.6	122
334	The uptake of inorganic iron complexes by human melanoma cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1991, 1093, 20-28.	1.9	68
335	Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part I. Ionisation characteristics of the ligands and their relevance to biological properties. Inorganica Chimica Acta, 1990, 170, 165-170.	1.2	70
336	Pyridoxal isonicotinoyl hydrazone and analogues. Biology of Metals, 1989, 2, 69-76.	1.1	25
337	Effect of pyridoxal isonicotinoyl hydrazone and other hydrazones on iron release from macrophages, reticulocytes and hepatocytes. Biochimica Et Biophysica Acta - General Subjects, 1988, 967, 122-129.	1.1	70