Masayuki Endo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7639594/publications.pdf

Version: 2024-02-01

184 papers 7,920 citations

50170 46 h-index 82 g-index

220 all docs

220 docs citations

times ranked

220

5546 citing authors

#	Article	IF	Citations
1	Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology, 2011, 6, 166-169.	15.6	351
2	A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotechnology, 2012, 7, 169-173.	15.6	340
3	Photocatalytic Oxidation Reactivity of Holes in the Sulfur- and Carbon-Doped TiO2Powders Studied by Time-Resolved Diffuse Reflectance Spectroscopy. Journal of Physical Chemistry B, 2004, 108, 19299-19306.	1,2	263
4	A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nature Communications, 2016, 7, 10591.	5 . 8	259
5	Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure. Journal of the American Chemical Society, 2010, 132, 1592-1597.	6.6	204
6	Visualization of Dynamic Conformational Switching of the G-Quadruplex in a DNA Nanostructure. Journal of the American Chemical Society, 2010, 132, 16311-16313.	6.6	203
7	Programmed Two-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces. ACS Nano, 2011, 5, 665-671.	7.3	189
8	Singleâ€Molecule Analysis Using DNA Origami. Angewandte Chemie - International Edition, 2012, 51, 874-890.	7.2	189
9	Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly. Journal of the American Chemical Society, 2011, 133, 14488-14491.	6.6	177
10	Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature Communications, 2015, 6, 8052.	5. 8	176
11	Chemical Approaches to DNA Nanotechnology. ChemBioChem, 2009, 10, 2420-2443.	1.3	166
12	Photo-Controllable DNA Origami Nanostructures Assembling into Predesigned Multiorientational Patterns. Journal of the American Chemical Society, 2012, 134, 20645-20653.	6.6	158
13	Design and Development of Nanosized DNA Assemblies in Polypod-like Structures as Efficient Vehicles for Immunostimulatory CpG Motifs to Immune Cells. ACS Nano, 2012, 6, 5931-5940.	7.3	157
14	DNA Prism Structures Constructed by Folding of Multiple Rectangular Arms. Journal of the American Chemical Society, 2009, 131, 15570-15571.	6.6	123
15	Single-Molecule Imaging of Dynamic Motions of Biomolecules in DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy. Accounts of Chemical Research, 2014, 47, 1645-1653.	7.6	123
16	Dynamic Assembly/Disassembly Processes of Photoresponsive DNA Origami Nanostructures Directly Visualized on a Lipid Membrane Surface. Journal of the American Chemical Society, 2014, 136, 1714-1717.	6.6	121
17	Zincâ€Finger Proteins for Siteâ€Specific Protein Positioning on DNAâ€Origami Structures. Angewandte Chemie - International Edition, 2012, 51, 2421-2424.	7.2	120
18	A Versatile DNA Nanochip for Direct Analysis of DNA Baseâ€Excision Repair. Angewandte Chemie - International Edition, 2010, 49, 9412-9416.	7.2	112

#	Article	IF	CITATIONS
19	Direct Visualization of Walking Motions of Photocontrolled Nanomachine on the DNA Nanostructure. Nano Letters, 2015, 15, 6672-6676.	4.5	111
20	Direct and Singleâ€Molecule Visualization of the Solutionâ€State Structures of Gâ€Hairpin and Gâ€Triplex Intermediates. Angewandte Chemie - International Edition, 2014, 53, 4107-4112.	7.2	108
21	Site-Specific Fluorescent Labeling of RNA Molecules by Specific Transcription Using Unnatural Base Pairs. Journal of the American Chemical Society, 2005, 127, 17286-17295.	6.6	102
22	Porphyrin Lightâ€Harvesting Arrays Constructed in the Recombinant Tobacco Mosaic Virus Scaffold. Chemistry - A European Journal, 2007, 13, 8660-8666.	1.7	102
23	DNA Tube Structures Controlled by a Four-Way-Branched DNA Connector. Angewandte Chemie - International Edition, 2005, 44, 6074-6077.	7.2	93
24	DNA origami technology for biomaterials applications. Biomaterials Science, 2013, 1, 347-360.	2.6	86
25	Two-dimensional DNA origami assemblies using a four-way connector. Chemical Communications, 2011, 47, 3213.	2.2	78
26	State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chemical Reviews, 2014, 114, 1493-1520.	23.0	78
27	Singleâ€Molecule Visualization of the Hybridization and Dissociation of Photoresponsive Oligonucleotides and Their Reversible Switching Behavior in a DNA Nanostructure. Angewandte Chemie - International Edition, 2012, 51, 10518-10522.	7.2	77
28	Programmedâ€Assembly System Using DNA Jigsaw Pieces. Chemistry - A European Journal, 2010, 16, 5362-5368.	1.7	76
29	Confined space facilitates G-quadruplex formation. Nature Nanotechnology, 2017, 12, 582-588.	15.6	76
30	Singleâ€Molecule Mechanochemical Sensing Using DNA Origami Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 8137-8141.	7.2	74
31	Direct and Real-Time Observation of Rotary Movement of a DNA Nanomechanical Device. Journal of the American Chemical Society, 2013, 135, 1117-1123.	6.6	72
32	Engineering RNA–Protein Complexes with Different Shapes for Imaging and Therapeutic Applications. ACS Nano, 2014, 8, 8130-8140.	7. 3	71
33	Photoresponsive DNA Nanocapsule Having an Open/Close System for Capture and Release of Nanomaterials. Chemistry - A European Journal, 2014, 20, 14951-14954.	1.7	70
34	DNA Origami Based Visualization System for Studying Site-Specific Recombination Events. Journal of the American Chemical Society, 2014, 136, 211-218.	6.6	70
35	DNA Origami Nanomachines. Molecules, 2018, 23, 1766.	1.7	68
36	Lanthanide complex–oligo-DNA hybrid for sequence-selective hydrolysis of RNA. Journal of the Chemical Society Chemical Communications, 1994, , 2019-2020.	2.0	64

#	Article	IF	CITATIONS
37	Singleâ€Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors. Angewandte Chemie - International Edition, 2017, 56, 15324-15328.	7.2	63
38	Self-Assembling DNA Dendrimer for Effective Delivery of Immunostimulatory CpG DNA to Immune Cells. Biomacromolecules, 2015, 16, 1095-1101.	2.6	62
39	Site-Specific Incorporation of a Photo-Crosslinking Component into RNA by T7 Transcription Mediated by Unnatural Base Pairs. Chemistry and Biology, 2004, 11, 47-55.	6.2	57
40	Preparation of Chemically Modified RNA Origami Nanostructures. Chemistry - A European Journal, 2014, 20, 15330-15333.	1.7	52
41	Molecular Design for a Pinpoint RNA Scission. Interposition of Oligoamines between Two DNA Oligomers1. Journal of Organic Chemistry, 1997, 62, 846-852.	1.7	50
42	RNA-templated DNA origami structures. Chemical Communications, 2013, 49, 2879.	2.2	50
43	Single-Molecule Manipulation of the Duplex Formation and Dissociation at the G-Quadruplex/i-Motif Site in the DNA Nanostructure. ACS Nano, 2015, 9, 9922-9929.	7.3	50
44	Controlling the stoichiometry and strand polarity of a tetramolecular G-quadruplex structure by using a DNA origami frame. Nucleic Acids Research, 2013, 41, 8738-8747.	6.5	49
45	DNA Nanostructures for Targeted Antimicrobial Delivery. Angewandte Chemie - International Edition, 2020, 59, 12698-12702.	7.2	48
46	Diastereochemically Controlled Porphyrin Dimer Formation on a DNA Duplex Scaffold. Journal of Organic Chemistry, 2008, 73, 1106-1112.	1.7	47
47	Photochemical regulation of the activity of an endonuclease BamHI using an azobenzene moiety incorporated site-selectively into the dimer interface. Chemical Communications, 2004, , 2386.	2.2	46
48	Decreased water activity in nanoconfinement contributes to the folding of G-quadruplex and i-motif structures. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9539-9544.	3.3	46
49	HIV-1 Nucleocapsid Proteins as Molecular Chaperones for Tetramolecular Antiparallel G-Quadruplex Formation. Journal of the American Chemical Society, 2013, 135, 18575-18585.	6.6	44
50	Holliday junction resolvases mediate chloroplast nucleoid segregation. Science, 2017, 356, 631-634.	6.0	44
51	Four-Way-Branched DNAâ^'Porphyrin Conjugates for Construction of Four Double-Helix-DNA Assembled Structures. Journal of Organic Chemistry, 2005, 70, 7468-7472.	1.7	43
52	Self-assembling DNA hydrogel-based delivery of immunoinhibitory nucleic acids to immune cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 123-130.	1.7	42
53	Environmentâ€Dependent Selfâ€Assembly of DNA Origami Lattices on Phaseâ€Separated Lipid Membranes. Advanced Materials Interfaces, 2018, 5, 1800437.	1.9	42
54	Construction of integrated gene logic-chip. Nature Nanotechnology, 2018, 13, 933-940.	15.6	42

#	Article	IF	Citations
55	Pyrene-Stacked Nanostructures Constructed in the Recombinant Tobacco Mosaic Virus Rod Scaffold. Chemistry - A European Journal, 2006, 12, 3735-3740.	1.7	40
56	Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nature Communications, 2017, 8, 540.	5.8	40
57	Complexing DNA Origami Frameworks through Sequential Selfâ€Assembly Based on Directed Docking. Angewandte Chemie - International Edition, 2018, 57, 7061-7065.	7.2	40
58	Direct Visualization of the Movement of a Single T7â€RNA Polymerase and Transcription on a DNA Nanostructure. Angewandte Chemie - International Edition, 2012, 51, 8778-8782.	7.2	39
59	Control of A Double Helix DNA Assembly by Use of Cross-Linked Oligonucleotides. Journal of the American Chemical Society, 2003, 125, 13654-13655.	6.6	38
60	Single Molecule Visualization and Characterization of Sox2–Pax6 Complex Formation on a Regulatory DNA Element Using a DNA Origami Frame. Nano Letters, 2014, 14, 2286-2292.	4.5	38
61	Sequence-Selective Single-Molecule Alkylation with a Pyrrole–Imidazole Polyamide Visualized in a DNA Nanoscaffold. Journal of the American Chemical Society, 2012, 134, 4654-4660.	6.6	37
62	Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Research, 2016, 44, 6574-6582.	6.5	36
63	A Photoregulated DNAâ€Based Rotary System and Direct Observation of Its Rotational Movement. Chemistry - A European Journal, 2017, 23, 3979-3985.	1.7	36
64	Design and Synthesis of Photochemically Controllable Caspase-3. Angewandte Chemie - International Edition, 2004, 43, 5643-5645.	7.2	35
65	Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold. Chemical Communications, 2011, 47, 10743.	2.2	35
66	Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure. Nucleic Acids Research, 2014, 42, 7421-7428.	6.5	35
67	Singleâ€Molecule Visualization of the Activity of a Zn ²⁺ â€Dependent DNAzyme. Angewandte Chemie - International Edition, 2015, 54, 10550-10554.	7.2	35
68	Small molecule binding to a G-hairpin and a G-triplex: a new insight into anticancer drug design targeting G-rich regions. Chemical Communications, 2015, 51, 9181-9184.	2.2	35
69	Torsional Constraints of DNA Substrates Impact Cas9 Cleavage. Journal of the American Chemical Society, 2016, 138, 13842-13845.	6.6	34
70	DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K ⁺ Channels. Angewandte Chemie - International Edition, 2018, 57, 2586-2591.	7.2	33
71	Mimicking Membrane-Related Biological Events by DNA Origami Nanotechnology. ACS Nano, 2015, 9, 3418-3420.	7.3	32
72	Translation-dependent unwinding of stem–loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Research, 2019, 47, 8838-8859.	6.5	32

#	Article	IF	CITATIONS
73	Benzophenones in the higher triplet excited statesThis paper is dedicated to Professor Fred Lewis on the event of his 60th birthday Photochemical and Photobiological Sciences, 2003, 2, 1209.	1.6	28
74	Design and Synthesis of Photochemically Controllable Restriction EndonucleaseBamHI by Manipulating the Salt-Bridge Network in the Dimer Interface. Journal of Organic Chemistry, 2004, 69, 4292-4298.	1.7	28
75	Advances in DNA Origami–Cell Interfaces. ChemBioChem, 2020, 21, 33-44.	1.3	27
76	Effects of Benzyl Ether Type Dendrons as Hole-Harvesting Antennas, and Shielding for the Neutralization of Stilbene Core Radical Cations with Chloride Ion during Two-Photon Ionization of Stilbene Dendrimers Having Stilbene Core and Benzyl Ether Type Dendrons. Journal of the American Chemical Society, 2004, 126, 14217-14223.	6.6	26
77	A Hydrophilic Azobenzene-Bearing Amino Acid for Photochemical Control of a Restriction Enzyme BamHl. Bioconjugate Chemistry, 2005, 16, 1360-1366.	1.8	26
78	G-quadruplex-binding ligand-induced DNA synapsis inside a DNA origami frame. RSC Advances, 2014, 4, 6346.	1.7	26
79	Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search. ACS Nano, 2018, 12, 272-278.	7.3	26
80	Photoisomerization of 2′-deoxyribofuranosyl and ribofuranosyl 2-phenylazoimidazole. Tetrahedron Letters, 2003, 44, 6903-6906.	0.7	25
81	Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. Organic and Biomolecular Chemistry, 2011, 9, 2075.	1.5	25
82	Efficient amplification of self-gelling polypod-like structured DNA by rolling circle amplification and enzymatic digestion. Scientific Reports, 2015, 5, 14979.	1.6	25
83	Transcription Regulation System Mediated by Mechanical Operation of a DNA Nanostructure. Journal of the American Chemical Society, 2012, 134, 2852-2855.	6.6	24
84	Duplex DNA Is Weakened in Nanoconfinement. Journal of the American Chemical Society, 2020, 142, 10042-10049.	6.6	24
85	Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic component into RNA transcripts. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 2593-2596.	1.0	23
86	RNA Hydrolysis by the Cooperation of Carboxylate Ion and Ammonium Ion. Journal of the American Chemical Society, 1996, 118, 5478-5479.	6.6	22
87	Helical DNA Origami Tubular Structures with Various Sizes and Arrangements. Angewandte Chemie - International Edition, 2014, 53, 7484-7490.	7.2	22
88	Single-molecule observations of RNA–RNA kissing interactions in a DNA nanostructure. Biomaterials Science, 2016, 4, 130-135.	2.6	22
89	High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM. Scientific Reports, 2017, 7, 6166.	1.6	22
90	Stepwise Photocleavage of Two Câ^'O Bonds of 1,8-Bis[(4-benzoylphenoxy)-methyl]naphthalene with Three-Step Excitation Using Three-Color, Three-Laser Flash Photolysis. Journal of the American Chemical Society, 2004, 126, 7432-7433.	6.6	21

#	Article	IF	CITATIONS
91	Programming Rotary Motions with a Hexagonal DNA Nanomachine. Chemistry - A European Journal, 2019, 25, 5158-5162.	1.7	21
92	Programmable conformational regulation of porphyrin dimers on geometric scaffold of duplex DNA. Tetrahedron, 2008, 64, 1839-1846.	1.0	20
93	Triple Helix Formation in a Topologically Controlled DNA Nanosystem. Chemistry - A European Journal, 2016, 22, 5494-5498.	1.7	20
94	Parallel, Double-Helix DNA Nanostructures Using Interstrand Cross-Linked Oligonucleotides with Bismaleimide Linkers. Angewandte Chemie - International Edition, 2003, 42, 5744-5747.	7.2	19
95	Structural and Functional Analysis of Proteins by High-Speed Atomic Force Microscopy. Advances in Protein Chemistry and Structural Biology, 2012, 87, 5-55.	1.0	19
96	Nonâ€invasive Regulation of Cellular Morphology Using a Photoswitchable Mechanical DNA Polymer. Angewandte Chemie - International Edition, 2021, 60, 20342-20349.	7.2	19
97	Stepwise Photocleavage of Câ^'O Bonds of Bis(substituted-methyl)naphthalenes with Stepwise Excitation by Two-Color Two-Laser and Three-Color Three-Laser Irradiations. Journal of Physical Chemistry A, 2005, 109, 3797-3802.	1.1	18
98	DNA Origami: Synthesis and Selfâ€Assembly. Current Protocols in Nucleic Acid Chemistry, 2012, 48, Unit 12.9.1-18.	0.5	18
99	Direct observation of the dual-switching behaviors corresponding to the state transition in a DNA nanoframe. Chemical Communications, 2014, 50, 4211-4213.	2.2	17
100	Optimal Arrangement of Four Short DNA Strands for Delivery of Immunostimulatory Nucleic Acids to Immune Cells. Nucleic Acid Therapeutics, 2015, 25, 245-253.	2.0	17
101	Colloidal plasmonic DNA-origami with photo-switchable chirality in liquid crystals. Optics Letters, 2019, 44, 2831.	1.7	17
102	Novel Phosphoramidite Monomer for the Site-Selective Incorporation of a Diastereochemically Pure Phosphoramidate to Oligonucleotide. Journal of Organic Chemistry, 1996, 61, 1994-2000.	1.7	16
103	Transient Phenomena of Polyphenyls in the Higher Triplet Excited State. Journal of Physical Chemistry A, 2004, 108, 9361-9364.	1.1	16
104	Homolytic cleavage of C–Si bond of p-trimethylsilylmethylacetophenone upon stepwise two-photon excitation using two-color two-laser flash photolysis. Chemical Physics Letters, 2005, 407, 402-406.	1.2	15
105	Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes. Journal of Biochemistry, 2017, 161, mvw093.	0.9	15
106	Singleâ€Molecule Observation of the Photoregulated Conformational Dynamics of DNA Origami Nanoscissors. Angewandte Chemie, 2017, 129, 15526-15530.	1.6	15
107	DNA Origami Nanoplateâ€Based Emulsion with Nanopore Function. Angewandte Chemie - International Edition, 2019, 58, 15299-15303.	7.2	15
108	DNA density-dependent uptake of DNA origami-based two-or three-dimensional nanostructures by immune cells. Nanoscale, 2020, 12, 14818-14824.	2.8	15

#	Article	IF	CITATIONS
109	Direct observation and analysis of TET-mediated oxidation processes in a DNA origami nanochip. Nucleic Acids Research, 2020, 48, 4041-4051.	6.5	15
110	DNA Nanostructures for Targeted Antimicrobial Delivery. Angewandte Chemie, 2020, 132, 12798-12802.	1.6	15
111	Inside Cover: Programmed-Assembly System Using DNA Jigsaw Pieces (Chem. Eur. J. 18/2010). Chemistry - A European Journal, 2010, 16, 5228-5228.	1.7	14
112	AFM-based single-molecule observation of the conformational changes of DNA structures. Methods, 2019, 169, 3-10.	1.9	14
113	Structural arrangement of two DNA double helices using cross-linked oligonucleotide connectorsElectronic supplementary information (ESI) available: HPLC profiles and MALDI-TOF-MS of the cross-linked oligonucleotides. See http://www.rsc.org/suppdata/cc/b4/b402783c/. Chemical Communications, 2004. 1308.	2.2	13
114	Dihydrophenanthrene-Type Intermediates during Photoreaction of trans-4â€~-Benzyl-5-styrylfuran. Journal of Organic Chemistry, 2005, 70, 2708-2712.	1.7	13
115	Programmable DNA translation system using cross-linked DNA mediators. Chemical Communications, 2005, , 3153.	2.2	13
116	Control of the two-dimensional crystallization of DNA origami with various loop arrangements. Chemical Communications, 2013, 49, 686-688.	2.2	13
117	A Photocaged DNA Nanocapsule for Controlled Unlocking and Opening inside the Cell. Bioconjugate Chemistry, 2019, 30, 1860-1863.	1.8	13
118	Rate Constant of Bimolecular Triplet Energy Transfer from Chrysene in the Higher Triplet Excited States. Journal of Physical Chemistry A, 2004, 108, 7147-7150.	1.1	12
119	Quenching processes of aromatic hydrocarbons in the higher triplet excited states-energy transfer vs. electron transferElectronic supplementary information (ESI) available: The quenching of DBA(Tn) by CCl4, CHR(Tn) by NAP, the evidences of no DBA and CHR ions produced during two-color two-laser flash photolysis, and the evidence of formation of benzene/Cl complex. See	1.3	12
120	Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angewandte Chemie - International Edition, 2019, 58, 7626-7630.	7.2	12
121	Direct Observation of the Doubleâ€Stranded DNA Formation through Metal Ionâ€Mediated Base Pairing in the Nanoscale Structure. Chemistry - A European Journal, 2019, 25, 1446-1450.	1.7	12
122	Regulation of B–Z Conformational Transition and Complex Formation with a Zâ€Form Binding Protein by Introduction of Constraint to Doubleâ€Stranded DNA by using a DNA Nanoscaffold. Chemistry - A European Journal, 2013, 19, 16887-16890.	1.7	11
123	A lock-and-key mechanism for the controllable fabrication of DNA origami structures. Chemical Communications, 2014, 50, 8743.	2.2	10
124	Studying RNAP–promoter interactions using atomic force microscopy. Methods, 2015, 86, 4-9.	1.9	10
125	Linking two DNA duplexes with a rigid linker for DNA nanotechnology. Nucleic Acids Research, 2015, 43, 6692-6700.	6.5	10
126	Complexing DNA Origami Frameworks through Sequential Selfâ€Assembly Based on Directed Docking. Angewandte Chemie, 2018, 130, 7179-7183.	1.6	10

#	Article	IF	Citations
127	Triggering nucleic acid nanostructure assembly by conditional kissing interactions. Nucleic Acids Research, 2018, 46, 1052-1058.	6.5	10
128	Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chemical Communications, 2021, 57, 5594-5596.	2.2	10
129	Structural arrangement of DNA constrained by a cross-linker. Organic and Biomolecular Chemistry, 2005, 3, 3476.	1.5	9
130	Effects of Physical Damage in the Intermediate Phase on the Progression of Amyloid \hat{l}^2 Fibrillization. Chemistry - an Asian Journal, 2019, 14, 4140-4145.	1.7	9
131	Oligomerization of a modular ribozyme assembly of which is controlled by a programmable RNA–RNA interface between two structural modules. Journal of Bioscience and Bioengineering, 2019, 128, 410-415.	1.1	9
132	Dissection of nanoconfinement and proximity effects on the binding events in DNA origami nanocavity. Nucleic Acids Research, 2022, 50, 697-703.	6.5	9
133	A novel phosphoramidite for the site-selective introduction of functional groups into oligonucleotides via versatile tethers. Tetrahedron Letters, 1994, 35, 5879-5882.	0.7	8
134	Inhibition of the Formation and Decay of Stilbene Core Radical Cations by the Dendron during the Photoinduced Electron Transfer. Journal of Physical Chemistry B, 2005, 109, 973-976.	1.2	8
135	AFM analysis of changes in nucleosome wrapping induced by DNA epigenetic modification. Biomaterials Science, 2014, 2, 1399.	2.6	8
136	Direct Observation of Dynamic Interactions between Orientationâ€Controlled Nucleosomes in a DNA Origami Frame. Chemistry - A European Journal, 2020, 26, 15282-15289.	1.7	8
137	Photocontrolled DNA Origami Assembly by Using Two Photoswitches. Chemistry - A European Journal, 2021, 27, 778-784.	1.7	8
138	Detection of the Local Structural Changes in the Dimer Interface of BamHI Initiated by DNA Binding and Dissociation Using a Solvatochromic Fluorophore. Journal of Physical Chemistry B, 2006, 110, 21311-21318.	1.2	7
139	Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay. Nucleic Acids Research, 2016, 44, e125-e125.	6.5	7
140	Nucleosomes and Epigenetics from a Chemical Perspective. ChemBioChem, 2021, 22, 595-612.	1.3	7
141	Short intrinsically disordered polypeptide–oligonucleotide conjugates for programmed self-assembly of nanospheres with temperature-dependent size controllability. Soft Matter, 2021, 17, 1184-1188.	1.2	7
142	HBD1 protein with a tandem repeat of two HMG-box domains is a DNA clip to organize chloroplast nucleoids in <i>Chlamydomonas reinhardtii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
143	Recent Progress in DNA Origami Technology. Current Protocols in Nucleic Acid Chemistry, 2011, 45, Unit12.8.	0.5	6
144	Thermodynamic properties of branched DNA complexes with full-matched and mismatched DNA strands. Chemical Communications, 2006, , 2329.	2.2	5

#	Article	IF	Citations
145	Atomic force microscopy analysis of orientation and bending of oligodeoxynucleotides in polypod-like structured DNA. Nano Research, 2015, 8, 3764-3771.	5.8	5
146	X-ray Crystal Structure of a Cyclic-PIP–DNA Complex in the Reverse-Binding Orientation. Journal of the American Chemical Society, 2020, 142, 10544-10549.	6.6	5
147	Micro-homology intermediates: RecA's transient sampling revealed at the single molecule level. Nucleic Acids Research, 2021, 49, 1426-1435.	6.5	5
148	Flexible Assembly of Engineered Tetrahymena Ribozymes Forming Polygonal RNA Nanostructures with Catalytic Ability. ChemBioChem, 2021, 22, 2168-2176.	1.3	5
149	Biomimetic DNA Nanotechnology to Understand and Control Cellular Responses. ChemBioChem, 2022, 23, .	1.3	5
150	DNA-Based Daisy Chain Rotaxane Nanocomposite Hydrogels as Dual-Programmable Dynamic Scaffolds for Stem Cell Adhesion. ACS Applied Materials & Samp; Interfaces, 2022, 14, 20739-20748.	4.0	5
151	Evaluation of Storage Capacity of Electric Vehicles for Vehicle to Grid Considering Driver's Perspective., 2018,,.		4
152	Direct Observation of Dynamic Movement of DNA Molecules in DNA Origami Imaged Using High-Speed AFM. Methods in Molecular Biology, 2018, 1814, 213-224.	0.4	4
153	DNA Origami as a Tool in the Targeted Destruction of Bacteria. Biophysical Journal, 2019, 116, 324a.	0.2	4
154	Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy. Molecules, 2022, 27, 4224.	1.7	4
155	Three-dimensional DNA nanostructures constructed by folding of multiple rectangles. Nucleic Acids Symposium Series, 2009, 53, 81-82.	0.3	3
156	G-quadruplex Nanostructures Probed at the Single Molecular Level by Force-based Methods. , 2012, , 73-85.		3
157	Folding of single-stranded circular DNA into rigid rectangular DNA accelerates its cellular uptake. Nanoscale, 2019, 11, 23416-23422.	2.8	3
158	An RNA Triangle with Six Ribozyme Units Can Promote a Trans-Splicing Reaction through Trimerization of Unit Ribozyme Dimers. Applied Sciences (Switzerland), 2021, 11, 2583.	1.3	3
159	A Hexameric Ribozyme Nanostructure Formed by Doubleâ€Decker Assembly of a Pair of Triangular Ribozyme Trimers. ChemBioChem, 2022, , .	1.3	3
160	Monitoring of three distinct structures of restriction enzyme complexes using characteristic fluorescence from site-selectively incorporated solvatochromic probe. Photochemical and Photobiological Sciences, 2007, 6, 836.	1.6	2
161	Configurable assembly of DNA origami on MEMS by microfluidic device. , 2011, , .		2
162	DNA Origami Nanoplateâ€Based Emulsion with Nanopore Function. Angewandte Chemie, 2019, 131, 15443-15447.	1.6	2

#	Article	IF	CITATIONS
163	Direct Observation of the Formation and Dissociation of Double-Stranded DNA Containing G-Quadruplex/i-Motif Sequences in the DNA Origami Frame Using High-Speed AFM. Methods in Molecular Biology, 2019, 2035, 299-308.	0.4	2
164	Nonâ€invasive Regulation of Cellular Morphology Using a Photoswitchable Mechanical DNA Polymer. Angewandte Chemie, 2021, 133, 20505-20512.	1.6	2
165	Nanoscopic observation of a DNA crystal surface and its dynamic formation and degradation using atomic force microscopy. Chemical Communications, 2021, 57, 1651-1654.	2.2	2
166	Box-shaped ribozyme octamer formed by face-to-face dimerization of a pair of square-shaped ribozyme tetramers. Journal of Bioscience and Bioengineering, 2022, 134, 195-202.	1.1	2
167	Single-molecule Analysis Using DNA Origami Nanostructures. Seibutsu Butsuri, 2013, 53, 153-157.	0.0	1
168	Sensitivity of a chemically amplified three-component resist containing a dissolution inhibitor for extreme ultraviolet lithography. Polymer Journal, 2014, 46, 234-238.	1.3	1
169	Measuring chloride in live cells. Nature Nanotechnology, 2015, 10, 569-570.	15.6	1
170	DNA Origami Scaffolds as Templates for Functional Tetrameric Kir3 K ⁺ Channels. Angewandte Chemie, 2018, 130, 2616-2621.	1.6	1
171	Folding RNA–Protein Complex into Designed Nanostructures. Methods in Molecular Biology, 2021, 2323, 221-232.	0.4	1
172	Folding RNA–Protein Complex into Designed Nanostructures. Methods in Molecular Biology, 2015, 1316, 169-179.	0.4	1
173	Catalytic RNA nano-objects formed by self-assembly of group I ribozyme dimers serving as unit structures. Journal of Bioscience and Bioengineering, 2020, 130, 253-259.	1.1	1
174	DNA Origami-based Construction of Meso-scale Multi-dimensional Architects and Expression of the Functionality in the Designed DNA Nanospace. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1352-1362.	0.0	1
175	3P306 Construction and functional analysis of DNA origami base DNA-RNAP hybrid nanomachine(28.Bioengineering,Poster,The 51st Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2013, 53, S262.	0.0	0
176	3SAA-03 Designing DNA/RNA nanostructure-based information converters(Development of Molecular) Tj ETQq0 (0 0 rgBT /0 0.0	Overlock 10 ⁻ 0
177	1P316 Rational design of orthogonal gene transcription nano device on DNA origami(28.) Tj ETQq1 1 0.784314 r Butsuri, 2014, 54, S193.	gBT /Over 0.0	lock 10 Tf 50 0
178	Masayuki Endo. Angewandte Chemie - International Edition, 2015, 54, 2002-2002.	7.2	0
179	Single-Molecule Visualization of Biomolecules in the Designed DNA Origami Nanostructures Using High-Speed Atomic Force Microscopy. RNA Technologies, 2016, , 403-427.	0.2	O
180	Direct Observation and Analysis of the Dynamics of the Photoresponsive Transcription Factor GAL4. Angewandte Chemie, 2019, 131, 7708-7712.	1.6	0

#	Article	IF	CITATIONS
181	A photocaged DNA nanocapsule for delivery and manipulation in cells. Methods in Enzymology, 2020, 641, 329-342.	0.4	0
182	DNA Nanotechnology to Disclose Molecular Events at the Nanoscale and Mesoscale Levels. Fundamental Biomedical Technologies, 2021, , 65-122.	0.2	0
183	Self-assembly of Two-dimensional DNA Origami Lattices on Lipid Bilayer Membranes. Seibutsu Butsuri, 2019, 59, 103-105.	0.0	O
184	Molecular Nanomachines Constructed from DNA Origami. Journal of the Institute of Electrical Engineers of Japan, 2020, 140, 579-581.	0.0	0