David M Glover

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638935/publications.pdf

Version: 2024-02-01

92 papers 8,981 citations

51 h-index 84 g-index

97 all docs

97
docs citations

97 times ranked 7607 citing authors

#	Article	IF	CITATIONS
1	The dimeric Golgi protein Gorab binds to Sas6 as a monomer to mediate centriole duplication. ELife, 2021, 10, .	6.0	5
2	Mauve/LYST limits fusion of lysosome-related organelles and promotes centrosomal recruitment of microtubule nucleating proteins. Developmental Cell, 2021, 56, 1000-1013.e6.	7.0	11
3	Expression of SARS-CoV-2 receptor <i>ACE2</i> and the protease <i>TMPRSS2</i> suggests susceptibility of the human embryo in the first trimester. Open Biology, 2020, 10, 200162.	3.6	71
4	Interaction interface in the C-terminal parts of centriole proteins Sas6 and Ana2. Open Biology, 2020, 10, 200221.	3.6	3
5	Open Biology in a new decade. Open Biology, 2020, 10, 200025.	3.6	0
6	Tissue specific requirement of Drosophila Rcd4 for centriole duplication and ciliogenesis. Journal of Cell Biology, 2020, 219, .	5.2	5
7	Novel perspectives of target-binding by the evolutionarily conserved PP4 phosphatase. Open Biology, 2020, 10, 200343.	3.6	19
8	2018: a year in review for Open Biology. Open Biology, 2019, 9, 190015.	3.6	0
9	Reviewers in 2018. Open Biology, 2019, 9, 190032.	3.6	O
10	Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Developmental Cell, 2019, 51, 698-712.e8.	7.0	157
10	Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Developmental Cell, 2019, 51, 698-712.e8. New Year's revolution. Open Biology, 2018, 8, 180005.	7.0 3.6	157 O
	51, 698-712.e8.		
11	51, 698-712.e8. New Year's revolution. Open Biology, 2018, 8, 180005. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell, 2018, 175,	3.6	0
11 12	New Year's revolution. Open Biology, 2018, 8, 180005. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell, 2018, 175, 1902-1916.e13. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted	3.6 28.9	78
11 12 13	New Year's revolution. Open Biology, 2018, 8, 180005. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell, 2018, 175, 1902-1916.e13. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biology, 2018, 8, . Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like	3.6 28.9 3.6	0 78 25
11 12 13	New Year's revolution. Open Biology, 2018, 8, 180005. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell, 2018, 175, 1902-1916.e13. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biology, 2018, 8, . Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nature Cell Biology, 2018, 20, 979-989. Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nature	3.6 28.9 3.6 10.3	0 78 25 248
11 12 13 14	New Year's revolution. Open Biology, 2018, 8, 180005. CARM1 and Paraspeckles Regulate Pre-implantation Mouse Embryo Development. Cell, 2018, 175, 1902-1916.e13. Constitutive regulation of mitochondrial morphology by Aurora A kinase depends on a predicted cryptic targeting sequence at the N-terminus. Open Biology, 2018, 8, . Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nature Cell Biology, 2018, 20, 979-989. Gorab is a Golgi protein required for structure and duplication of Drosophila centrioles. Nature Genetics, 2018, 50, 1021-1031. Rab1 interacts with GOLPH3 and controls Golgi structure and contractile ring constriction during	3.6 28.9 3.6 10.3	0 78 25 248

#	Article	IF	Citations
19	A new world for Open Biology. Open Biology, 2017, 7, 170002.	3 . 6	O
20	Two-step phosphorylation of Ana2 by Plk4 is required for the sequential loading of Ana2 and Sas6 to initiate procentriole formation. Open Biology, 2017, 7, 170247.	3.6	63
21	Reviewers in 2016. Open Biology, 2017, 7, 170092.	3.6	0
22	Targeting of $Fzr/Cdh1$ for timely activation of the APC/C at the centrosome during mitotic exit. Nature Communications, 2016, 7, 12607.	12.8	38
23	Network of protein interactions within the <i>Drosophila</i> inner kinetochore. Open Biology, 2016, 6, 150238.	3.6	22
24	Conserved molecular interactions in centriole-to-centrosome conversion. Nature Cell Biology, 2016, 18, 87-99.	10.3	121
25	DAPPER: a data-mining resource for protein-protein interactions. BioData Mining, 2015, 8, 30.	4.0	5
26	The Dawn of Aurora Kinase Research: From Fly Genetics to the Clinic. Frontiers in Cell and Developmental Biology, 2015, 3, 73.	3.7	34
27	Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biology, 2015, 5, 150209.	3.6	130
28	Centromeric binding and activity of Protein Phosphatase 4. Nature Communications, 2015, 6, 5894.	12.8	37
29	The Centrosome and Its Duplication Cycle. Cold Spring Harbor Perspectives in Biology, 2015, 7, a015800.	5.5	203
30	Maternal-zygotic knockout reveals a critical role of Cdx2 in the morula to blastocyst transition. Developmental Biology, 2015, 398, 147-152.	2.0	48
31	The Pentameric Nucleoplasmin Fold Is Present in Drosophila FKBP39 and a Large Number of Chromatin-Related Proteins. Journal of Molecular Biology, 2015, 427, 1949-1963.	4.2	29
32	Establishment of Centromeric Chromatin by the CENP-A Assembly Factor CAL1 Requires FACT-Mediated Transcription. Developmental Cell, 2015, 34, 73-84.	7.0	113
33	Plk4 Phosphorylates Ana2 to Trigger Sas6 Recruitment and Procentriole Formation. Current Biology, 2014, 24, 2526-2532.	3.9	152
34	Differing requirements for Augmin in male meiotic and mitotic spindle formation in <i>Drosophila </i> Open Biology, 2014, 4, 140047.	3.6	12
35	Inhibition of Polo kinase by BI2536 affects centriole separation duringDrosophilamale meiosis. Cell Cycle, 2014, 13, 2064-2263.	2.6	18
36	Insight into the Architecture of the NuRD Complex. Journal of Biological Chemistry, 2014, 289, 21844-21855.	3.4	75

#	Article	IF	CITATIONS
37	Affinity Purification of Protein Complexes from Drosophila Embryos in Cell Cycle Studies. Methods in Molecular Biology, 2014, 1170, 571-588.	0.9	17
38	Spindle Formation in the Mouse Embryo Requires Plk4 in the Absence of Centrioles. Developmental Cell, 2013, 27, 586-597.	7.0	63
39	The overlooked greatwall: a new perspective on mitotic control. Open Biology, 2012, 2, 120023.	3.6	56
40	Structured illumination of the interface between centriole and peri-centriolar material. Open Biology, 2012, 2, 120104.	3.6	225
41	Klp10A, a Microtubule-Depolymerizing Kinesin-13, Cooperates with CP110 to Control Drosophila Centriole Length. Current Biology, 2012, 22, 502-509.	3.9	54
42	Suppression of Scant Identifies Endos as a Substrate of Greatwall Kinase and a Negative Regulator of Protein Phosphatase 2A in Mitosis. PLoS Genetics, 2011, 7, e1002225.	3.5	55
43	Asterless is a scaffold for the onset of centriole assembly. Nature, 2010, 467, 714-718.	27.8	275
44	The RNA binding protein Larp1 regulates cell division, apoptosis and cell migration. Nucleic Acids Research, 2010, 38, 5542-5553.	14.5	94
45	The chromosome passenger complex is required for fidelity of chromosome transmission and cytokinesis in meiosis of mouse oocytes. Journal of Cell Science, 2010, 123, 4292-4300.	2.0	77
46	The SCF/Slimb Ubiquitin Ligase Limits Centrosome Amplification through Degradation of SAK/PLK4. Current Biology, 2009, 19, 43-49.	3.9	226
47	CARM1 is Required in Embryonic Stem Cells to Maintain Pluripotency and Resist Differentiation. Stem Cells, 2009, 27, 2637-2645.	3.2	101
48	Polo-like kinases: conservation and divergence in their functions and regulation. Nature Reviews Molecular Cell Biology, 2009, 10, 265-275.	37.0	554
49	Drosophila Larp associates with poly(A)-binding protein and is required for male fertility and syncytial embryo development. Developmental Biology, 2009, 334, 186-197.	2.0	73
50	Isolation of Protein Complexes Involved in Mitosis and Cytokinesis from Drosophila Cultured Cells. Methods in Molecular Biology, 2009, 545, 99-112.	0.9	34
51	Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes and Development, 2008, 22, 2707-2720.	5.9	67
52	From centriole biogenesis to cellular function: Centrioles are essential for cell division at critical developmental stages. Cell Cycle, 2008, 7, 11-16.	2.6	67
53	Girds â€`n' cleeks o' cytokinesis: microtubule sticks and contractile hoops in cell division. Biochemical Society Transactions, 2008, 36, 400-404.	3.4	5
54	Aurora C Promotes Condensation and Separation of Homologues in Meiosis I of Mouse Oocytes Biology of Reproduction, 2008, 78, 192-192.	2.7	0

#	Article	IF	Citations
55	Mutations in Drosophila Greatwall/Scant Reveal Its Roles in Mitosis and Meiosis and Interdependence with Polo Kinase. PLoS Genetics, 2007, 3, e200.	3.5	95
56	Molecular Analysis of Core Kinetochore Composition and Assembly in Drosophila melanogaster. PLoS ONE, 2007, 2, e478.	2.5	119
57	DSAS-6 Organizes a Tube-like Centriole Precursor, and Its Absence Suggests Modularity in Centriole Assembly. Current Biology, 2007, 17, 1465-1472.	3.9	172
58	Does prepatterning occur in the mouse egg? (Reply). Nature, 2006, 442, E4-E4.	27.8	3
59	RacGAP50C is sufficient to signal cleavage furrow formation during cytokinesis. Journal of Cell Science, 2006, 119, 4402-4408.	2.0	68
60	Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene, 2005, 24, 230-237.	5.9	85
61	Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genetics, 2005, preprint, e200.	3.5	0
62	Mutations in orbit/mast reveal that the central spindle is comprised of two microtubule populations, those that initiate cleavage and those that propagate furrow ingression. Journal of Cell Biology, 2004, 166, 49-60.	5.2	139
63	giant nucleiis essential in the cell cycle transition from meiosis to mitosis. Development (Cambridge), 2003, 130, 2997-3005.	2.5	29
64	Aurora A on the Mitotic Spindle Is Activated by the Way It Holds Its Partner. Molecular Cell, 2003, 12, 797-799.	9.7	9
65	<i>Drosophila</i> Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. Journal of Cell Biology, 2002, 156, 437-451.	5.2	302
66	A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in <i>Drosophila</i> . Journal of Cell Science, 2002, 115, 913-922.	2.0	82
67	<i>Drosophila</i> Aurora B Kinase Is Required for Histone H3 Phosphorylation and Condensin Recruitment during Chromosome Condensation and to Organize the Central Spindle during Cytokinesis. Journal of Cell Biology, 2001, 152, 669-682.	5 . 2	590
68	Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biology, 2001, 3, 421-424.	10.3	117
69	Metaphase Arrest with Centromere Separation in polo Mutants of Drosophila. Journal of Cell Biology, 2001, 153, 663-676.	5.2	100
70	The mitotic roles of Polo-like kinase. Journal of Cell Science, 2001, 114, 2357-2358.	2.0	108
71	The SCF ubiquitin ligase protein Slimb regulates centrosome duplication in Drosophila. Current Biology, 2000, 10, 1131-1134.	3.9	83
72	Mutation of a Drosophila gamma tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization. Genes and Development, 2000, 14, 3126-3139.	5.9	58

#	Article	IF	CITATIONS
73	Mutual Correction of Faulty PCNA Subunits in Temperature-Sensitive Lethal mus209 Mutants of Drosophila melanogaster. Genetics, 2000, 154, 1721-1733.	2.9	32
74	A New Genetic Method for Isolating Functionally Interacting Genes: High plo1+-Dependent Mutants and Their Suppressors Define Genes in Mitotic and Septation Pathways in Fission Yeast. Genetics, 2000, 155, 1521-1534.	2.9	24
75	The Drosophila <i>mus101</i> Gene, Which Links DNA Repair, Replication and Condensation of Heterochromatin in Mitosis, Encodes a Protein With Seven BRCA1 C-Terminus Domains. Genetics, 2000, 156, 711-721.	2.9	59
76	Abnormal Spindle Protein, Asp, and the Integrity of Mitotic Centrosomal Microtubule Organizing Centers. Science, 1999, 283, 1733-1735.	12.6	156
77	Mouse polo-like kinase 1 associates with the acentriolar spindle poles, meiotic chromosomes and spindle midzone during oocyte maturation. Chromosoma, 1998, 107, 430-439.	2.2	61
78	Interactions between mgr, asp, and polo: asp function modulated by polo and needed to maintain the poles of monopolar and bipolar spindles. Chromosoma, 1998, 107, 452-460.	2.2	28
79	The Drosophila Gene abnormal spindle Encodes a Novel Microtubule-associated Protein That Associates with the Polar Regions of the Mitotic Spindle. Journal of Cell Biology, 1997, 137, 881-890.	5.2	142
80	Homologous regions of Fen1 and p21Cip1 compete for binding to the same site on PCNA: a potential mechanism to co-ordinate DNA replication and repair. Oncogene, 1997, 14, 2313-2321.	5.9	151
81	<i>P</i> -Element Insertion Alleles of Essential Genes on the Third Chromosome of <i>Drosophila melanogaster</i> Correlation of Physical and Cytogenetic Maps in Chromosomal Region 86E-87F. Genetics, 1997, 147, 1697-1722.	2.9	152
82	THE CENTROSOME CYCLE. Biochemical Society Transactions, 1996, 24, 507S-507S.	3.4	0
83	Mutations in New Cell Cycle Genes That Fail to Complement a Multiply Mutant Third Chromosome of Drosophila. Genetics, 1996, 144, 1097-1111.	2.9	32
84	Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell, 1995, 81, 95-105.	28.9	752
85	A conserved mitotic kinase active at late anaphaseâ€"telophase in syncytial Drosophila embryos. Nature, 1993, 363, 637-640.	27.8	137
86	The 55 kd regulatory subunit of Drosophila protein phosphatase 2A is required for anaphase. Cell, 1993, 72, 621-633.	28.9	225
87	twine, a cdc25 homolog that functions in the male and female germline of drosophila. Cell, 1992, 69, 977-988.	28.9	219
88	Transcripts of one of two Drosophila cyclin genes become localized in pole cells during embryogenesis. Nature, 1989, 338, 337-340.	27.8	132
89	Centrosomes, and not nuclei, initiate pole cell formation in Drosophila embryos. Cell, 1989, 57, 611-619.	28.9	172
90	Analysis of the Drosophila rDNA promoter by transient expression. Nucleic Acids Research, 1988, 16, 4253-4268.	14.5	19

#	Article	lF	CITATIONS
91	The dissociation of nuclear and centrosomal division in gnu, a mutation causing giant nuclei in Drosophila. Cell, 1986, 46, 457-468.	28.9	181
92	Arrangements and rearrangements of sequences flanking the two types of rDNA insertion in D. melanogaster. Nature, 1981, 290, 749-754.	27.8	194