
Andrei L Gartel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7638359/publications.pdf Version: 2024-02-01

ANDRELL CARTEL

#	Article	IF	CITATIONS
1	The antagonistic duality of NPM1 mutations in AML. Blood Advances, 2022, , .	5.2	Ο
2	Therapeutic Vulnerabilities of Transcription Factors in AML. Molecular Cancer Therapeutics, 2021, 20, 229-237.	4.1	8
3	FOXM1-AKT Positive Regulation Loop Provides Venetoclax Resistance in AML. Frontiers in Oncology, 2021, 11, 696532.	2.8	13
4	Novel FOXM1 inhibitor identified via gene network analysis induces autophagic FOXM1 degradation to overcome chemoresistance of human cancer cells. Cell Death and Disease, 2021, 12, 704.	6.3	19
5	FOXM1: a potential therapeutic target in human solid cancers. Expert Opinion on Therapeutic Targets, 2020, 24, 205-217.	3.4	57
6	Honokiol is a FOXM1 antagonist. Cell Death and Disease, 2018, 9, 84.	6.3	42
7	FOXM1 contributes to treatment failure in acute myeloid leukemia. JCI Insight, 2018, 3, .	5.0	18
8	FOXM1 in Cancer: Interactions and Vulnerabilities. Cancer Research, 2017, 77, 3135-3139.	0.9	168
9	A Novel Function of Molecular Chaperone HSP70. Journal of Biological Chemistry, 2016, 291, 142-148.	3.4	28
10	Inhibition of FOXM1 By Ixazomib Confers Chemosensitivity in NPM1-Wild Type Acute Myeloid Leukemia. Blood, 2016, 128, 1577-1577.	1.4	0
11	Mutual Regulation of FOXM1, NPM and ARF Proteins. Journal of Cancer, 2015, 6, 538-541.	2.5	3
12	Targeting FOXM1 auto-regulation in cancer. Cancer Biology and Therapy, 2015, 16, 185-186.	3.4	8
13	FOXM1 Binds Nucleophosmin in AML and Confers Resistance to Chemotherapy. Blood, 2015, 126, 2467-2467.	1.4	4
14	Proteasome inhibitors suppress the protein expression of mutant p53. Cell Cycle, 2014, 13, 3202-3206.	2.6	17
15	Suppression of the Oncogenic Transcription Factor FOXM1 by Proteasome Inhibitors. Scientifica, 2014, 2014, 1-5.	1.7	7
16	ROS inhibitor <i>N</i> -acetyl- <scp>L</scp> -cysteine antagonizes the activity of proteasome inhibitors. Biochemical Journal, 2013, 454, 201-208.	3.7	274
17	Combination of Oxidative Stress and FOXM1 Inhibitors Induces Apoptosis in Cancer Cells and Inhibits Xenograft Tumor Growth. American Journal of Pathology, 2013, 183, 257-265.	3.8	37
18	Targeting FOXM1 in cancer. Biochemical Pharmacology, 2013, 85, 644-652.	4.4	144

Andrei L Gartel

#	Article	IF	CITATIONS
19	Thiazole Antibiotics Siomycin a and Thiostrepton Inhibit the Transcriptional Activity of FOXM1. Frontiers in Oncology, 2013, 3, 150.	2.8	25
20	FOX(M1) News—lt Is Cancer. Molecular Cancer Therapeutics, 2013, 12, 245-254.	4.1	179
21	Found in transcription: FOXO1 upregulates miRNAs on chromosome X. Cell Cycle, 2013, 12, 2523-2523.	2.6	3
22	The oncogenic transcription factor FOXM1 and anticancer therapy. Cell Cycle, 2012, 11, 3341-3342.	2.6	15
23	Combination treatment with bortezomib and thiostrepton is effective against tumor formation in mouse models of DEN/PB-induced liver carcinogenesis. Cell Cycle, 2012, 11, 3370-3372.	2.6	10
24	Combination with bortezomib enhances the antitumor effects of nanoparticle-encapsulated thiostrepton. Cancer Biology and Therapy, 2012, 13, 184-189.	3.4	12
25	Paradoxical inhibition of cellular protein expression by proteasome inhibitors. Biomolecular Concepts, 2012, 3, 593-595.	2.2	1
26	Mechanisms of Apoptosis Induced by Anticancer Compounds in Melanoma Cells. Current Topics in Medicinal Chemistry, 2012, 12, 50-52.	2.1	9
27	Suppression of FOXM1 Sensitizes Human Cancer Cells to Cell Death Induced by DNA-Damage. PLoS ONE, 2012, 7, e31761.	2.5	75
28	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
29	Proteasome Inhibitors Induce p53-Independent Apoptosis in Human Cancer Cells. American Journal of Pathology, 2011, 178, 355-360.	3.8	52
30	Thiostrepton, proteasome inhibitors and FOXM1. Cell Cycle, 2011, 10, 4341-4342.	2.6	42
31	Proteasome inhibitors suppress expression of NPM and ARF proteins. Cell Cycle, 2011, 10, 3827-3829.	2.6	6
32	FoxM1 knockdown sensitizes human cancer cells to proteasome inhibitor-induced apoptosis but not to autophagy. Cell Cycle, 2011, 10, 3269-3273.	2.6	31
33	Proteasome inhibitory activity of thiazole antibiotics. Cancer Biology and Therapy, 2011, 11, 43-47.	3.4	34
34	Nucleophosmin Interacts with FOXM1 and Modulates the Level and Localization of FOXM1 in Human Cancer Cells. Journal of Biological Chemistry, 2011, 286, 41425-41433.	3.4	40
35	Micelle-Encapsulated Thiostrepton as an Effective Nanomedicine for Inhibiting Tumor Growth and for Suppressing FOXM1 in Human Xenografts. Molecular Cancer Therapeutics, 2011, 10, 2287-2297.	4.1	41
36	Thiazole Antibiotic Thiostrepton Synergize with Bortezomib to Induce Apoptosis in Cancer Cells. PLoS ONE, 2011, 6, e17110.	2.5	28

ANDREI L GARTEL

#	Article	IF	CITATIONS
37	The suppression of FOXM1 and its targets in breast cancer xenograft tumors by siRNA. Oncotarget, 2011, 2, 1218-1226.	1.8	43
38	Thiazole antibiotics against breast cancer. Cell Cycle, 2010, 9, 1214-1217.	2.6	29
39	New potential antiâ€cancer agents synergize with bortezomib and ABTâ€737 against prostate cancer. Prostate, 2010, 70, 825-833.	2.3	33
40	ARC Synergizes with ABT-737 to Induce Apoptosis in Human Cancer Cells. Molecular Cancer Therapeutics, 2010, 9, 1688-1696.	4.1	18
41	A new target for proteasome inhibitors: FoxM1. Expert Opinion on Investigational Drugs, 2010, 19, 235-242.	4.1	79
42	Thiazole Antibiotics Target FoxM1 and Induce Apoptosis in Human Cancer Cells. PLoS ONE, 2009, 4, e5592.	2.5	173
43	FoxM1 Is a General Target for Proteasome Inhibitors. PLoS ONE, 2009, 4, e6593.	2.5	166
44	Wild-type p53 protects normal cells against apoptosis induced by thiostrepton. Cell Cycle, 2009, 8, 2850-2851.	2.6	11
45	A novel mode of FoxM1 regulation: Positive auto-regulatory loop. Cell Cycle, 2009, 8, 1966-1967.	2.6	97
46	p21 ^{WAF1/CIP1} and cancer: A shifting paradigm?. BioFactors, 2009, 35, 161-164.	5.4	71
47	p53 negatively regulates expression of FoxM1. Cell Cycle, 2009, 8, 3425-3427.	2.6	81
48	Differential sensitivity of human colon cancer cell lines to the nucleoside analogs ARC and DRB. International Journal of Cancer, 2008, 122, 1426-1429.	5.1	11
49	FOXM1: The Achilles' heel of cancer?. Nature Reviews Cancer, 2008, 8, 242-242.	28.4	35
50	Transcriptional inhibitors, p53 and apoptosis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 83-86.	7.4	12
51	miRNAs: Little known mediators of oncogenesis. Seminars in Cancer Biology, 2008, 18, 103-110.	9.6	131
52	FoxM1 inhibitors as potential anticancer drugs. Expert Opinion on Therapeutic Targets, 2008, 12, 663-665.	3.4	52
53	Novel anticancer compounds induce apoptosis in melanoma cells. Cell Cycle, 2008, 7, 1851-1855.	2.6	76
54	p21WAF1/CIP1 may be a tumor suppressor after all. Cancer Biology and Therapy, 2007, 6, 1182-1183.	3.4	15

ANDREI L GARTEL

#	Article	IF	CITATIONS
55	Identification of a Chemical Inhibitor of the Oncogenic Transcription Factor Forkhead Box M1. Cancer Research, 2006, 66, 9731-9735.	0.9	210
56	A new mode of transcriptional repression by c-myc: methylation. Oncogene, 2006, 25, 1989-1990.	5.9	17
57	RNA interference in cancer. New Biotechnology, 2006, 23, 17-34.	2.7	116
58	Inducer and inhibitor: "Antagonistic duality―of p21 in differentiation. Leukemia Research, 2006, 30, 1215-1216.	0.8	8
59	CDK9 Phosphorylates p53 on Serine Residues 33, 315 and 392. Cell Cycle, 2006, 5, 519-521.	2.6	57
60	A Novel Transcriptional Inhibitor Induces Apoptosis in Tumor Cells and Exhibits Antiangiogenic Activity. Cancer Research, 2006, 66, 3264-3270.	0.9	53
61	ls p21 an oncogene?. Molecular Cancer Therapeutics, 2006, 5, 1385-1386.	4.1	64
62	The PPAR-? Agonist Pioglitazone Post-Trancriptionally Induces p21 in PC3 Prostate Cancer but Not in Other Cell Lines. Cell Cycle, 2005, 4, 575-577.	2.6	18
63	Lost in Transcription: p21 Repression, Mechanisms, and Consequences: Figure 1 Cancer Research, 2005, 65, 3980-3985.	0.9	731
64	Myc-ARF (Alternate Reading Frame) Interaction Inhibits the Functions of Myc. Journal of Biological Chemistry, 2004, 279, 36698-36707.	3.4	102
65	Constitutive expression of E2F-1 leads to p21-dependent cell cycle arrest in S phase of the cell cycle. Oncogene, 2004, 23, 4173-4176.	5.9	96
66	A novel p21WAF1/CIP1 transcript is highly dependent on p53 for its basal expression in mouse tissues. Oncogene, 2004, 23, 8154-8157.	5.9	15
67	Mechanisms of c-myc-mediated transcriptional repression of growth arrest genes. Experimental Cell Research, 2003, 283, 17-21.	2.6	219
68	A New Method for Determining the Status of p53 in Tumor Cell Lines of Different Origin. Oncology Research, 2003, 13, 405-408.	1.5	54
69	Activation of Akt/Protein Kinase B Overcomes a G ₂ /M Cell Cycle Checkpoint Induced by DNA Damage. Molecular and Cellular Biology, 2002, 22, 7831-7841.	2.3	263
70	The role of the cyclin-dependent kinase inhibitor p21 in apoptosis. Molecular Cancer Therapeutics, 2002, 1, 639-49.	4.1	676
71	A Novel P53-Related Activity in a Colon Adenocarcinoma Cell Line With Mutant P53. Scientific World Journal, The, 2001, 1, 36-36.	2.1	1
72	Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 4510-4515.	7.1	372

ANDREI L GARTEL

#	Article	IF	CITATIONS
73	A role for E2F1 in Ras activation of p21(WAF1/CIP1) transcription. Oncogene, 2000, 19, 961-964.	5.9	49
74	Sp1 and Sp3 activate p21 (WAF1/CIP1) gene transcription in the Caco-2 colon adenocarcinoma cell line. Oncogene, 2000, 19, 5182-5188.	5.9	72
75	Transcriptional Regulation of the p21(WAF1/CIP1)Gene. Experimental Cell Research, 1999, 246, 280-289.	2.6	602
76	Activation and repression of p21WAF1/CIP1 transcription by RB binding proteins. Oncogene, 1998, 17, 3463-3469.	5.9	69
77	The Growth-Regulatory Role of p21 (WAF1/CIP1). Progress in Molecular and Subcellular Biology, 1998, 20, 43-71.	1.6	44
78	p21Negative Regulator of the Cell Cycle. Experimental Biology and Medicine, 1996, 213, 138-149.	2.4	331
79	p21 (WAF1/CIP1) Expression Is Induced in Newly Nondividing Cells in Diverse Epithelia and during Differentiation of the Caco-2 Intestinal Cell Line. Experimental Cell Research, 1996, 227, 171-181.	2.6	124
80	ldentification of multiple B-cell transcriptional repressor elements in Sμâ^'Cμ intron of mouse IgH chain locus. Somatic Cell and Molecular Genetics, 1994, 20, 371-379.	0.7	3