Ronald N Harty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763779/publications.pdf

Version: 2024-02-01

62 papers

3,293 citations

32 h-index 56 g-index

67 all docs

67
docs citations

times ranked

67

2710 citing authors

#	Article	IF	CITATIONS
1	Overlapping Motifs (PTAP and PPEY) within the Ebola Virus VP40 Protein Function Independently as Late Budding Domains: Involvement of Host Proteins TSG101 and VPS-4. Journal of Virology, 2003, 77, 1812-1819.	3.4	255
2	A Proline-Rich Motif within the Matrix Protein of Vesicular Stomatitis Virus and Rabies Virus Interacts with WW Domains of Cellular Proteins: Implications for Viral Budding. Journal of Virology, 1999, 73, 2921-2929.	3.4	249
3	ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3974-3979.	7.1	245
4	Contribution of Ebola Virus Glycoprotein, Nucleoprotein, and VP24 to Budding of VP40 Virus-Like Particles. Journal of Virology, 2004, 78, 7344-7351.	3.4	217
5	Rhabdoviruses and the Cellular Ubiquitin-Proteasome System: a Budding Interaction. Journal of Virology, 2001, 75, 10623-10629.	3.4	185
6	Late Domain Function Identified in the Vesicular Stomatitis Virus M Protein by Use of Rhabdovirus-Retrovirus Chimeras. Journal of Virology, 1999, 73, 3359-3365.	3.4	126
7	Biochemical and Functional Characterization of the Ebola Virus VP24 Protein: Implications for a Role in Virus Assembly and Budding. Journal of Virology, 2003, 77, 1793-1800.	3.4	118
8	Phospholipid Scramblase 1 Potentiates the Antiviral Activity of Interferon. Journal of Virology, 2004, 78, 8983-8993.	3.4	107
9	Budding of PPxY-Containing Rhabdoviruses Is Not Dependent on Host Proteins TGS101 and VPS4A. Journal of Virology, 2004, 78, 2657-2665.	3.4	95
10	Antiviral Activity of Innate Immune Protein ISG15. Journal of Innate Immunity, 2009, 1, 397-404.	3.8	87
11	Small-Molecule Probes Targeting the Viral PPxY-Host Nedd4 Interface Block Egress of a Broad Range of RNA Viruses. Journal of Virology, 2014, 88, 7294-7306.	3.4	86
12	The NS3 Protein of Bluetongue Virus Exhibits Viroporin-like Properties. Journal of Biological Chemistry, 2004, 279, 43092-43097.	3.4	83
13	PPEY Motif within the Rabies Virus (RV) Matrix Protein Is Essential for Efficient Virion Release and RV Pathogenicity. Journal of Virology, 2008, 82, 9730-9738.	3.4	76
14	Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology. Virology Journal, 2006, 3, 31.	3.4	68
15	Host IQGAP1 and Ebola Virus VP40 Interactions Facilitate Virus-Like Particle Egress. Journal of Virology, 2013, 87, 7777-7780.	3.4	68
16	The YPLGVG sequence of the Nipah virus matrix protein is required for budding. Virology Journal, 2008, 5, 137.	3.4	63
17	No exit: Targeting the budding process to inhibit filovirus replication. Antiviral Research, 2009, 81, 189-197.	4.1	62
18	ITCH E3 Ubiquitin Ligase Interacts with Ebola Virus VP40 To Regulate Budding. Journal of Virology, 2016, 90, 9163-9171.	3.4	60

#	Article	IF	CITATIONS
19	ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress. Journal of Infectious Diseases, 2015, 212, S138-S145.	4.0	57
20	SARS-CoV-2 Envelope (E) protein interacts with PDZ-domain-2 of host tight junction protein ZO1. PLoS ONE, 2021, 16, e0251955.	2.5	56
21	The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virology, 2015, 10, 537-546.	1.8	51
22	Conserved Motifs within Ebola and Marburg Virus VP40 Proteins Are Important for Stability, Localization, and Subsequent Budding of Virus-Like Particles. Journal of Virology, 2010, 84, 2294-2303.	3.4	49
23	Functional characterization of Ebola virus L-domains using VSV recombinants. Virology, 2005, 336, 291-298.	2.4	48
24	Packaging of actin into Ebola virus VLPs. Virology Journal, 2005, 2, 92.	3.4	47
25	Chaperone-Mediated Autophagy Protein BAG3 Negatively Regulates Ebola and Marburg VP40-Mediated Egress. PLoS Pathogens, 2017, 13, e1006132.	4.7	43
26	Rabies Virus Assembly and Budding. Advances in Virus Research, 2011, 79, 23-32.	2.1	42
27	Calcium Regulation of Hemorrhagic Fever Virus Budding: Mechanistic Implications for Host-Oriented Therapeutic Intervention. PLoS Pathogens, $2015,11,e1005220$.	4.7	42
28	A Host-Oriented Inhibitor of Junin Argentine Hemorrhagic Fever Virus Egress. Journal of Virology, 2014, 88, 4736-4743.	3.4	41
29	Quinoxaline-based inhibitors of Ebola and Marburg VP40 egress. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 3429-3435.	2.2	41
30	Functional Analysis of Late-Budding Domain Activity Associated with the PSAP Motif within the Vesicular Stomatitis Virus M Protein. Journal of Virology, 2004, 78, 7823-7827.	3.4	40
31	Debulking SARS-CoV-2 in saliva using angiotensin converting enzyme 2 in chewing gum to decrease oral virus transmission and infection. Molecular Therapy, 2022, 30, 1966-1978.	8.2	39
32	Ubiquitin Ligase WWP1 Interacts with Ebola Virus VP40 To Regulate Egress. Journal of Virology, 2017, 91, .	3.4	37
33	Role for Amino Acids ₂₁₂ KLR ₂₁₄ of Ebola Virus VP40 in Assembly and Budding. Journal of Virology, 2007, 81, 11452-11460.	3.4	36
34	Suppressor of Cytokine Signaling 3 Is an Inducible Host Factor That Regulates Virus Egress during Ebola Virus Infection. Journal of Virology, 2015, 89, 10399-10406.	3.4	34
35	WW- and SH3-Domain Interactions with Epstein-Barr Virus LMP2A. Experimental Cell Research, 2000, 257, 332-340.	2.6	29
36	Viral and host proteins that modulate filovirus budding. Future Virology, 2010, 5, 481-491.	1.8	29

#	Article	IF	CITATIONS
37	Bimolecular Complementation to Visualize Filovirus VP40-Host Complexes in Live Mammalian Cells: Toward the Identification of Budding Inhibitors. Advances in Virology, 2011, 2011, 1-10.	1.1	24
38	L-Domain Flanking Sequences Are Important for Host Interactions and Efficient Budding of Vesicular Stomatitis Virus Recombinants. Journal of Virology, 2005, 79, 12617-12622.	3.4	22
39	Influence of calcium/calmodulin on budding of Ebola VLPs: implications for the involvement of the Ras/Raf/MEK/ERK pathway. Virus Genes, 2007, 35, 511-520.	1.6	22
40	Modifications of the PSAP region of the matrix protein lead to attenuation of vesicular stomatitis virus in vitro and in vivo. Journal of General Virology, 2007, 88, 2559-2567.	2.9	21
41	Characterization of Filovirus Protein–Protein Interactions in Mammalian Cells Using Bimolecular Complementation. Journal of Infectious Diseases, 2011, 204, S817-S824.	4.0	21
42	A luciferase-based budding assay for Ebola virus. Journal of Virological Methods, 2006, 137, 115-119.	2.1	15
43	Viruses go modular. Journal of Biological Chemistry, 2020, 295, 4604-4616.	3.4	15
44	Angiomotin regulates budding and spread of Ebola virus. Journal of Biological Chemistry, 2020, 295, 8596-8601.	3.4	14
45	Permeabilization of the plasma membrane by Ebola virus GP2. Virus Genes, 2007, 34, 273-281.	1.6	12
46	Hemorrhagic Fever Virus Budding Studies. Methods in Molecular Biology, 2018, 1604, 209-215.	0.9	12
47	Host Protein BAG3 is a Negative Regulator of Lassa VLP Egress. Diseases (Basel, Switzerland), 2018, 6, 64.	2.5	11
48	Modular mimicry and engagement of the Hippo pathway by Marburg virus VP40: Implications for filovirus biology and budding. PLoS Pathogens, 2020, 16, e1008231.	4.7	11
49	Compound FC-10696 Inhibits Egress of Marburg Virus. Antimicrobial Agents and Chemotherapy, 2021, 65, e0008621.	3.2	11
50	Ubiquitin Ligase SMURF2 Interacts with Filovirus VP40 and Promotes Egress of VP40 VLPs. Viruses, 2021, 13, 288.	3.3	10
51	Cytopathogenesis of Vesicular Stomatitis Virus Is Regulated by the PSAP Motif of M Protein in a Species-Dependent Manner. Viruses, 2012, 4, 1605-1618.	3.3	8
52	Ebola virus mediated infectivity is restricted in canine and feline cells. Veterinary Microbiology, 2016, 182, 102-107.	1.9	7
53	Improving Transient Transfection Efficiency in a Differentiated, Polar Epithelial Cell Layer. Journal of Biomolecular Techniques, 2019, 30, 19-24.	1.5	7
54	Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. International Journal of Molecular Sciences, 2022, 23, 2995.	4.1	6

#	Article	IF	CITATIONS
55	Virus Budding/Host Interactions. Advances in Virology, 2011, 2011, 1-2.	1.1	5
56	In Vivo Replication and Pathogenesis of Vesicular Stomatitis Virus Recombinant M40 Containing Ebola Virus L-Domain Sequences. Infectious Diseases: Research and Treatment, 2012, 5, IDRT.S10652.	1.7	3
57	Calcium and filoviruses: a budding relationship. Future Microbiology, 2016, 11, 713-715.	2.0	3
58	Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. Journal of Virology, 2021, 95, .	3.4	3
59	Phage display identification of nanomolar ligands for human NEDD4-WW3: Energetic and dynamic implications for the development of broad-spectrum antivirals. International Journal of Biological Macromolecules, 2022, 207, 308-323.	7. 5	3
60	WWOX-Mediated Degradation of AMOTp130 Negatively Affects Egress of Filovirus VP40 Virus-Like Particles. Journal of Virology, 2022, 96, jvi0202621.	3.4	2
61	Antiviral Strategies for Ebola Virus. , 2005, , 153-176.		0
62	ASSEMBLY AND BUDDING OF RHABDO- AND FILOVIRUSES. , 2015, , 171-197.		0