Zhi Wei Seh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7637777/publications.pdf

Version: 2024-02-01

93 papers 29,551 citations

62 h-index

18436

92 g-index

98 all docs 98 docs citations 98 times ranked 24017 citing authors

#	Article	IF	CITATIONS
1	Toward Automated Computational Discovery of Battery Materials. Advanced Materials Technologies, 2023, 8, .	3.0	5
2	Machine Learning: An Advanced Platform for Materials Development and State Prediction in Lithiumâ€lon Batteries. Advanced Materials, 2022, 34, e2101474.	11.1	140
3	Guiding Uniform Sodium Deposition through Host Modification for Sodium Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	16
4	Rechargeable magnesium batteries enabled by conventional electrolytes with multifunctional organic chloride additives. Energy Storage Materials, 2022, 45, 1120-1132.	9.5	40
5	Implications of Na-ion solvation on Na anode–electrolyte interphase. Trends in Chemistry, 2022, 4, 48-59.	4.4	26
6	Insights on "nitrate salt―in lithium anode for stabilized solid electrolyte interphase. , 2022, 4, 12-20.		22
7	Towards autonomous high-throughput multiscale modelling of battery interfaces. Energy and Environmental Science, 2022, 15, 579-594.	15.6	17
8	Stable interphase chemistry of textured Zn anode for rechargeable aqueous batteries. Science Bulletin, 2022, 67, 716-724.	4.3	80
9	Autonomous high-throughput computations in catalysis. Chem Catalysis, 2022, 2, 940-956.	2.9	14
10	Comparative Study of Conventional Electrolytes for Rechargeable Magnesium Batteries. Batteries and Supercaps, 2022, 5, .	2.4	11
11	Theory-guided experimental design in battery materials research. Science Advances, 2022, 8, eabm2422.	4.7	52
12	Quasiâ€solidâ€state conversion cathode materials for roomâ€temperature sodium–sulfur batteries. , 2022, 1, .		10
13	Understanding the Cathode–Electrolyte Interphase in Lithiumâ€lon Batteries. Energy Technology, 2022, 10, .	1.8	34
14	Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 2021, 35, 310-316.	9.5	26
15	Material design strategies to improve the performance of rechargeable magnesium–sulfur batteries. Materials Horizons, 2021, 8, 830-853.	6.4	55
16	Atomistic modeling of electrocatalysis: Are we there yet?. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1499.	6.2	79
17	A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm ^{â€"2} and 20 mAh cm ^{â€"2} . Journal of the American Chemical Society, 2021, 143, 3143-3152.	6.6	132
18	Roomâ€Temperature Sodium–Sulfur Batteries and Beyond: Realizing Practical High Energy Systems through Anode, Cathode, and Electrolyte Engineering. Advanced Energy Materials, 2021, 11, 2003493.	10.2	114

#	Article	IF	Citations
19	Addressing the Low Solubility of a Solid Electrolyte Interphase Stabilizer in an Electrolyte by Composite Battery Anode Design. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13354-13361.	4.0	23
20	Understanding electrified interfaces. Nature Reviews Materials, 2021, 6, 289-291.	23.3	38
21	A Saltâ€inâ€Metal Anode: Stabilizing the Solid Electrolyte Interphase to Enable Prolonged Battery Cycling. Advanced Functional Materials, 2021, 31, 2010602.	7.8	69
22	Designing Nanostructured Metal Chalcogenides as Cathode Materials for Rechargeable Magnesium Batteries. Small, 2021, 17, e2007683.	5.2	52
23	Ultrafine Sodium Sulfide Clusters Confined in Carbon Nano-polyhedrons as High-Efficiency Presodiation Reagents for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27057-27065.	4.0	17
24	Tunable Nitrogen-Doping of Sulfur Host Nanostructures for Stable and Shuttle-Free Room-Temperature Sodium–Sulfur Batteries. Nano Letters, 2021, 21, 5401-5408.	4.5	36
25	Manipulating Redox Kinetics of Sulfur Species Using Mott–Schottky Electrocatalysts for Advanced Lithium–Sulfur Batteries. Nano Letters, 2021, 21, 6656-6663.	4.5	145
26	Promises and Challenges of the Practical Implementation of Prelithiation in Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2101565.	10.2	112
27	Using a Chloride-Free Magnesium Battery Electrolyte to Form a Robust Anode–Electrolyte Nanointerface. Nano Letters, 2021, 21, 8220-8228.	4.5	51
28	MXenes and their derivatives as nitrogen reduction reaction catalysts: recent progress and perspectives. Materials Today Energy, 2021, 22, 100864.	2.5	24
29	Strain-controlled single Cr-embedded nitrogen-doped graphene achieves efficient nitrogen reduction. Materials Advances, 2021, 2, 5704-5711.	2.6	9
30	Sulfurized Cyclopentadienyl Nanocomposites for Shuttle-Free Room-Temperature Sodium–Sulfur Batteries. Nano Letters, 2021, 21, 10538-10546.	4.5	11
31	Enhanced Chemical Immobilization and Catalytic Conversion of Polysulfide Intermediates Using Metallic Mo Nanoclusters for High-Performance Li–S Batteries. ACS Nano, 2020, 14, 1148-1157.	7.3	125
32	Metal/LiF/Li ₂ O Nanocomposite for Battery Cathode Prelithiation: Trade-off between Capacity and Stability. Nano Letters, 2020, 20, 546-552.	4.5	72
33	Tailoring binder–cathode interactions for long-life room-temperature sodium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 22983-22997.	5.2	47
34	A High-Performance Magnesium Triflate-based Electrolyte for Rechargeable Magnesium Batteries. Cell Reports Physical Science, 2020, 1, 100265.	2.8	48
35	2H-MoS ₂ on Mo ₂ CT _{<i>x</i>} MXene Nanohybrid for Efficient and Durable Electrocatalytic Hydrogen Evolution. ACS Nano, 2020, 14, 16140-16155.	7.3	180
36	Rational Design of Two-Dimensional Transition Metal Carbide/Nitride (MXene) Hybrids and Nanocomposites for Catalytic Energy Storage and Conversion. ACS Nano, 2020, 14, 10834-10864.	7.3	349

#	Article	IF	Citations
37	Defectâ€Enhanced CO ₂ Reduction Catalytic Performance in Oâ€Terminated MXenes. ChemSusChem, 2020, 13, 5690-5698.	3.6	59
38	Two-Dimensional Titanium and Molybdenum Carbide MXenes as Electrocatalysts for CO2 Reduction. IScience, 2020, 23, 101181.	1.9	123
39	Conformal Prelithiation Nanoshell on LiCoO ₂ Enabling High-Energy Lithium-Ion Batteries. Nano Letters, 2020, 20, 4558-4565.	4.5	92
40	Fast conversion and controlled deposition of lithium (poly)sulfides in lithium-sulfur batteries using high-loading cobalt single atoms. Energy Storage Materials, 2020, 30, 250-259.	9.5	264
41	Predicting the state of charge and health of batteries using data-driven machine learning. Nature Machine Intelligence, 2020, 2, 161-170.	8.3	338
42	An artificial metal-alloy interphase for high-rate and long-life sodium–sulfur batteries. Energy Storage Materials, 2020, 29, 1-8.	9.5	91
43	Catalytic Polysulfide Conversion and Physiochemical Confinement for Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 1904010.	10.2	165
44	A Biphasic Interphase Design Enabling High Performance in Room Temperature Sodium-Sulfur Batteries. Cell Reports Physical Science, 2020, 1, 100044.	2.8	47
45	Self-gating in semiconductor electrocatalysis. Nature Materials, 2019, 18, 1098-1104.	13.3	167
46	Catalytic Effect on CO ₂ Electroreduction by Hydroxyl-Terminated Two-Dimensional MXenes. ACS Applied Materials & Samp; Interfaces, 2019, 11, 36571-36579.	4.0	94
47	Surface-engineered cobalt oxide nanowires as multifunctional electrocatalysts for efficient Zn-Air batteries-driven overall water splitting. Energy Storage Materials, 2019, 23, 1-7.	9.5	48
48	Engineering stable electrode-separator interfaces with ultrathin conductive polymer layer for high-energy-density Li-S batteries. Energy Storage Materials, 2019, 23, 261-268.	9.5	149
49	Metal–organic framework-derived hierarchical MoS ₂ /CoS ₂ nanotube arrays as pH-universal electrocatalysts for efficient hydrogen evolution. Journal of Materials Chemistry A, 2019, 7, 13339-13346.	5.2	133
50	Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis. Nanoscale Horizons, 2019, 4, 809-827.	4.1	218
51	Ultrathin two-dimensional materials for photo- and electrocatalytic hydrogen evolution. Materials Today, 2018, 21, 749-770.	8.3	228
52	High-throughput theoretical optimization of the hydrogen evolution reaction on MXenes by transition metal modification. Journal of Materials Chemistry A, 2018, 6, 4271-4278.	5.2	198
53	Tuning the Basal Plane Functionalization of Two-Dimensional Metal Carbides (MXenes) To Control Hydrogen Evolution Activity. ACS Applied Energy Materials, 2018, 1, 173-180.	2.5	304
54	Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques. Nature Catalysis, 2018, 1, 922-934.	16.1	515

#	Article	IF	Citations
55	Establishing new scaling relations on two-dimensional MXenes for CO ₂ electroreduction. Journal of Materials Chemistry A, 2018, 6, 21885-21890.	5.2	138
56	On the Role of Sulfur for the Selective Electrochemical Reduction of CO ₂ to Formate on CuS _{<i>x</i>} Catalysts. ACS Applied Materials & Interfaces, 2018, 10, 28572-28581.	4.0	157
57	Tailoring Porosity in Copper-Based Multinary Sulfide Nanostructures for Energy, Biomedical, Catalytic, and Sensing Applications. ACS Applied Nano Materials, 2018, 1, 3042-3062.	2.4	40
58	Catalytic oxidation of Li ₂ S on the surface of metal sulfides for Liâ ⁻ 'S batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 840-845.	3.3	1,030
59	Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355,	6.0	7,837
60	Theoretical Investigation of 2D Layered Materials as Protective Films for Lithium and Sodium Metal Anodes. Advanced Energy Materials, 2017, 7, 1602528.	10.2	196
61	Lithium Sulfide/Metal Nanocomposite as a High apacity Cathode Prelithiation Material. Advanced Energy Materials, 2016, 6, 1600154.	10.2	87
62	Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti ₂ C and Mo ₂ C MXenes. Journal of Physical Chemistry C, 2016, 120, 28432-28440.	1.5	104
63	Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries. CheM, 2016, 1, 287-297.	5.8	247
64	Two-Dimensional Molybdenum Carbide (MXene) as an Efficient Electrocatalyst for Hydrogen Evolution. ACS Energy Letters, 2016, 1, 589-594.	8.8	1,100
65	Designing high-energy lithium–sulfur batteries. Chemical Society Reviews, 2016, 45, 5605-5634.	18.7	2,008
66	High-capacity battery cathode prelithiation to offset initial lithium loss. Nature Energy, 2016, 1 , .	19.8	265
67	Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium–sulfur battery design. Nature Communications, 2016, 7, 11203.	5.8	1,136
68	In Situ Chemical Synthesis of Lithium Fluoride/Metal Nanocomposite for High Capacity Prelithiation of Cathodes. Nano Letters, 2016, 16, 1497-1501.	4. 5	112
69	Lithium Batteries: Highly Nitridated Graphene-Li2S Cathodes with Stable Modulated Cycles (Adv.) Tj ETQq1 1 0.7	84314 rgE 10.2	3T Overlock
70	Highly Nitridated Graphene–Li ₂ S Cathodes with Stable Modulated Cycles. Advanced Energy Materials, 2015, 5, 1501369.	10.2	97
71	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. Nano Letters, 2015, 15, 3899-3906.	4.5	296
72	Understanding the Anchoring Effect of Two-Dimensional Layered Materials for Lithium–Sulfur Batteries. Nano Letters, 2015, 15, 3780-3786.	4. 5	779

#	Article	IF	Citations
73	A Sulfur Cathode with Pomegranateâ€Like Cluster Structure. Advanced Energy Materials, 2015, 5, 1500211.	10.2	122
74	A Highly Reversible Room-Temperature Sodium Metal Anode. ACS Central Science, 2015, 1, 449-455.	5.3	733
75	In-operando optical imaging of temporal and spatial distribution of polysulfides in lithium-sulfur batteries. Nano Energy, 2015, 11, 579-586.	8.2	84
76	Improving lithium–sulphur batteries through spatial control of sulphur species deposition on a hybrid electrode surface. Nature Communications, 2014, 5, 3943.	5.8	369
77	Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy and Environmental Science, 2014, 7, 672.	15.6	277
78	Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes. Nature Communications, 2014, 5, 5017.	5.8	530
79	Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface. Energy and Environmental Science, 2014, 7, 3381-3390.	15.6	476
80	Sulfur Cathodes with Hydrogen Reduced Titanium Dioxide Inverse Opal Structure. ACS Nano, 2014, 8, 5249-5256.	7.3	297
81	High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance. Chemical Science, 2014, 5, 1396.	3.7	109
82	Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chemical Science, 2013, 4, 3673.	3.7	412
83	Understanding the Role of Different Conductive Polymers in Improving the Nanostructured Sulfur Cathode Performance. Nano Letters, 2013, 13, 5534-5540.	4.5	601
84	High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7148-7153.	3.3	359
85	Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nature Communications, 2013, 4, 1331.	5.8	1,884
86	Amphiphilic Surface Modification of Hollow Carbon Nanofibers for Improved Cycle Life of Lithium Sulfur Batteries. Nano Letters, 2013, 13, 1265-1270.	4.5	668
87	Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes. Nano Letters, 2013, 13, 3385-3390.	4.5	208
88	Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization. Advanced Functional Materials, 2012, 22, 2891-2914.	7.8	188
89	Hydrogels: Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization (Adv.) Tj ETQq $1\ 1$	0.784314 7.8	rgBT /Overlo
90	Janus Au‶iO ₂ Photocatalysts with Strong Localization of Plasmonic Nearâ€Fields for Efficient Visibleâ€Light Hydrogen Generation. Advanced Materials, 2012, 24, 2310-2314.	11.1	768

ZHI WEI SEH

#	Article	IF	CITATIONS
91	Titaniaâ€Coated Metal Nanostructures. Chemistry - an Asian Journal, 2012, 7, 2174-2184.	1.7	29
92	Synthesis and multiple reuse of eccentric Au@TiO2 nanostructures as catalysts. Chemical Communications, 2011, 47, 6689.	2.2	105
93	Anisotropic Growth of Titania onto Various Gold Nanostructures: Synthesis, Theoretical Understanding, and Optimization for Catalysis. Angewandte Chemie - International Edition, 2011, 50, 10140-10143.	7.2	139