## Steve P Mcgrath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7637475/publications.pdf Version: 2024-02-01

|          |                | 1099         | 2243           |
|----------|----------------|--------------|----------------|
| 363      | 46,312         | 112          | 201            |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 371      | 371            | 371          | 22855          |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Revisiting strategies to incorporate gender-responsiveness into maize breeding in southern Africa.<br>Outlook on Agriculture, 2022, 51, 178-186.                                                   | 3.4  | 8         |
| 2  | Portable X-ray fluorescence (pXRF) calibration for analysis of nutrient concentrations and trace element contaminants in fertilisers. PLoS ONE, 2022, 17, e0262460.                                | 2.5  | 9         |
| 3  | Potential Coâ€benefits and tradeâ€offs between improved soil management, climate change mitigation and agriâ€food productivity. Food and Energy Security, 2022, 11, .                              | 4.3  | 6         |
| 4  | Changes in organic carbon to clay ratios in different soils and land uses in England and Wales over time. Scientific Reports, 2022, 12, 5162.                                                      | 3.3  | 13        |
| 5  | Soil and landscape factors influence geospatial variation in maize grain zinc concentration in Malawi.<br>Scientific Reports, 2022, 12, 7986.                                                      | 3.3  | 10        |
| 6  | The effect of soil organic matter on long-term availability of phosphorus in soil: Evaluation in a biological P mining experiment. Geoderma, 2022, 423, 115965.                                    | 5.1  | 4         |
| 7  | What is a good level of soil organic matter? An index based on organic carbon to clay ratio. European<br>Journal of Soil Science, 2021, 72, 2493-2503.                                             | 3.9  | 55        |
| 8  | Dynamics of soil phosphorus measured by ammonium lactate extraction as a function of the soil phosphorus balance and soil properties. Geoderma, 2021, 385, 114855.                                 | 5.1  | 3         |
| 9  | A comparison of soil texture measurements using mid-infrared spectroscopy (MIRS) and laser diffraction analysis (LDA) in diverse soils. Scientific Reports, 2021, 11, 16.                          | 3.3  | 20        |
| 10 | Plant Available Zinc Is Influenced by Landscape Position in the Amhara Region, Ethiopia. Plants, 2021, 10, 254.                                                                                    | 3.5  | 11        |
| 11 | African soil properties and nutrients mapped at 30Âm spatial resolution using two-scale ensemble machine learning. Scientific Reports, 2021, 11, 6130.                                             | 3.3  | 103       |
| 12 | Liming impacts barley yield over a wide concentration range of soil exchangeable cations. Nutrient<br>Cycling in Agroecosystems, 2021, 120, 131-144.                                               | 2.2  | 7         |
| 13 | The nutritional quality of cereals varies geospatially in Ethiopia and Malawi. Nature, 2021, 594, 71-76.                                                                                           | 27.8 | 104       |
| 14 | The grain mineral composition of barley, oat and wheat on soils with pH and soil phosphorus gradients. European Journal of Agronomy, 2021, 126, 126281.                                            | 4.1  | 18        |
| 15 | The effect of soil properties on zinc lability and solubility in soils of Ethiopia – an isotopic dilution study. Soil, 2021, 7, 255-268.                                                           | 4.9  | 12        |
| 16 | Continental-scale controls on soil organic carbon across sub-Saharan Africa. Soil, 2021, 7, 305-332.                                                                                               | 4.9  | 30        |
| 17 | Plastics in biosolids from 1950 to 2016: A function of global plastic production and consumption.<br>Water Research, 2021, 201, 117367.                                                            | 11.3 | 77        |
| 18 | Investigation of the soil properties that affect Olsen P critical values in different soil types and impact on P fertiliser recommendations. Furopean Journal of Soil Science, 2021, 72, 1802-1816 | 3.9  | 12        |

| #  | Article                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | On pedagogy of a Soil Science Centre for Doctoral Training. European Journal of Soil Science, 2021, 72, 2320-2329.                                                                                                                                                                   | 3.9  | 1         |
| 20 | The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy, 2020, 10, 1463.                                                                                                                                                                          | 3.0  | 12        |
| 21 | Century long fertilization reduces stochasticity controlling grassland microbial community succession. Soil Biology and Biochemistry, 2020, 151, 108023.                                                                                                                             | 8.8  | 60        |
| 22 | Assessing the evolution of wheat grain traits during the last 166Âyears using archived samples.<br>Scientific Reports, 2020, 10, 21828.                                                                                                                                              | 3.3  | 12        |
| 23 | Spatial prediction of the concentration of selenium (Se) in grain across part of Amhara Region,<br>Ethiopia. Science of the Total Environment, 2020, 733, 139231.                                                                                                                    | 8.0  | 24        |
| 24 | Arguments surrounding the essentiality of boron to vascular plants. New Phytologist, 2020, 226, 1225-1227.                                                                                                                                                                           | 7.3  | 6         |
| 25 | Comprehensive nutrient analysis in agricultural organic amendments through non-destructive assays using machine learning. PLoS ONE, 2020, 15, e0242821.                                                                                                                              | 2.5  | 6         |
| 26 | Simulation of Phosphorus Chemistry, Uptake and Utilisation by Winter Wheat. Plants, 2019, 8, 404.                                                                                                                                                                                    | 3.5  | 11        |
| 27 | Plant–microbe networks in soil are weakened by centuryâ€long use of inorganic fertilizers. Microbial<br>Biotechnology, 2019, 12, 1464-1475.                                                                                                                                          | 4.2  | 77        |
| 28 | Yield responses of arable crops to liming – An evaluation of relationships between yields and soil pH<br>from a long-term liming experiment. European Journal of Agronomy, 2019, 105, 176-188.                                                                                       | 4.1  | 80        |
| 29 | The Effect of Different Organic Fertilizers on Yield and Soil and Crop Nutrient Concentrations.<br>Agronomy, 2019, 9, 776.                                                                                                                                                           | 3.0  | 64        |
| 30 | Risk of Silver Transfer from Soil to the Food Chain Is Low after Long-Term (20 Years) Field<br>Applications of Sewage Sludge. Environmental Science & Technology, 2018, 52, 4901-4909.                                                                                               | 10.0 | 39        |
| 31 | Long-term Effects of Biosolids on Soil Quality and Fertility. Soil Science, 2018, 183, 89-98.                                                                                                                                                                                        | 0.9  | 19        |
| 32 | Effective methods to reduce cadmium accumulation in rice grain. Chemosphere, 2018, 207, 699-707.                                                                                                                                                                                     | 8.2  | 170       |
| 33 | Advancing the Understanding of Environmental Transformations, Bioavailability and Effects of<br>Nanomaterials, an International US Environmental Protection Agency—UK Environmental Nanoscience<br>Initiative Joint Program. Journal of Environmental Protection, 2018, 09, 385-404. | 0.7  | 5         |
| 34 | Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2848-2853.                                                                                                   | 7.1  | 260       |
| 35 | Mineral Availability as a Key Regulator of Soil Carbon Storage. Environmental Science &<br>Technology, 2017, 51, 4960-4969.                                                                                                                                                          | 10.0 | 167       |
| 36 | The Nodulin 26-like intrinsic membrane protein OsNIP3;2 is involved in arsenite uptake by lateral roots in rice. Journal of Experimental Botany, 2017, 68, 3007-3016.                                                                                                                | 4.8  | 84        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Historical trends in iodine and selenium in soil and herbage at the Park Grass Experiment, Rothamsted<br>Research, UK. Soil Use and Management, 2017, 33, 252-262.                                                           | 4.9  | 15        |
| 38 | A comparison of soil tests for available phosphorus in longâ€ŧerm field experiments in Europe.<br>European Journal of Soil Science, 2017, 68, 873-885.                                                                       | 3.9  | 71        |
| 39 | Determining the fate of selenium in wheat biofortification: an isotopically labelled field trial study.<br>Plant and Soil, 2017, 420, 61-77.                                                                                 | 3.7  | 24        |
| 40 | Phosphate stable oxygen isotope variability within a temperate agricultural soil. Geoderma, 2017, 285,<br>64-75.                                                                                                             | 5.1  | 29        |
| 41 | Longâ€ŧerm Impact of Sewage Sludge Application on <i>Rhizobium leguminosarum</i> biovar<br><i>trifolii</i> : An Evaluation Using Metaâ€Analysis. Journal of Environmental Quality, 2016, 45, 1572-1587.                      | 2.0  | 4         |
| 42 | Derivation of ecological standards for risk assessment of molybdate in soil. Environmental<br>Chemistry, 2016, 13, 168.                                                                                                      | 1.5  | 11        |
| 43 | Morphological responses of wheat ( <i>Triticum aestivum</i> L.) roots to phosphorus supply in two contrasting soils. Journal of Agricultural Science, 2016, 154, 98-108.                                                     | 1.3  | 25        |
| 44 | Population collapse of Lumbricus terrestris in conventional arable cultivations and response to straw applications. Applied Soil Ecology, 2016, 108, 72-75.                                                                  | 4.3  | 17        |
| 45 | Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis. Environmental Pollution, 2016, 219, 1021-1035.                                                                   | 7.5  | 52        |
| 46 | Long-Term Impact of Field Applications of Sewage Sludge on Soil Antibiotic Resistome. Environmental<br>Science & Technology, 2016, 50, 12602-12611.                                                                          | 10.0 | 97        |
| 47 | Nanoparticles within WWTP sludges have minimal impact on leachate quality and soil microbial community structure and function. Environmental Pollution, 2016, 211, 399-405.                                                  | 7.5  | 61        |
| 48 | Concentrations of metals and metalloids in soils that have the potential to lead to exceedance of maximum limit concentrations of contaminants in food and feed. Soil Use and Management, 2015, 31, 34-45.                   | 4.9  | 21        |
| 49 | A review of the impacts of degradation threats on soil properties in the <scp>UK</scp> . Soil Use and Management, 2015, 31, 1-15.                                                                                            | 4.9  | 64        |
| 50 | Non-labile silver species in biosolids remain stable throughout 50 years of weathering and ageing.<br>Environmental Pollution, 2015, 205, 78-86.                                                                             | 7.5  | 41        |
| 51 | Distribution of the stable isotopes 57Fe and 68Zn in grain tissues of various wheat lines differing in their phytate content. Plant and Soil, 2015, 396, 73-83.                                                              | 3.7  | 22        |
| 52 | Monte Carlo simulations of the transformation and removal of Ag, TiO2, and ZnO nanoparticles in<br>wastewater treatment and land application of biosolids. Science of the Total Environment, 2015, 511,<br>535-543.          | 8.0  | 36        |
| 53 | The role of nodes in arsenic storage and distribution in rice. Journal of Experimental Botany, 2015, 66, 3717-3724.                                                                                                          | 4.8  | 99        |
| 54 | Nanomaterials in Biosolids Inhibit Nodulation, Shift Microbial Community Composition, and Result in<br>Increased Metal Uptake Relative to Bulk/Dissolved Metals. Environmental Science & Technology,<br>2015, 49, 8751-8758. | 10.0 | 90        |

| #  | Article                                                                                                                                                                                            | IF              | CITATIONS    |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 55 | Over 150ÂYears of Long-Term Fertilization Alters Spatial Scaling of Microbial Biodiversity. MBio, 2015, 6,                                                                                         | 4.1             | 57           |
| 56 | Soil Contamination in China: Current Status and Mitigation Strategies. Environmental Science &<br>Technology, 2015, 49, 750-759.                                                                   | 10.0            | 1,488        |
| 57 | Soil pH Determines Microbial Diversity and Composition in the Park Grass Experiment. Microbial Ecology, 2015, 69, 395-406.                                                                         | 2.8             | 544          |
| 58 | Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental<br>Science and Pollution Research, 2015, 22, 8779-8785.                                          | 5.3             | 26           |
| 59 | Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza) Tj ETQq1 1                                                                                           | 0.784314<br>2.5 | rgBT /Overlo |
| 60 | Combined NanoSIMS and synchrotron Xâ€ray fluorescence reveal distinct cellular and subcellular distribution patterns of trace elements in rice tissues. New Phytologist, 2014, 201, 104-115.       | 7.3             | 157          |
| 61 | Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice.<br>Plant and Soil, 2014, 376, 423-431.                                                       | 3.7             | 73           |
| 62 | Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chemistry, 2014, 146, 378-384.                                              | 8.2             | 88           |
| 63 | Lead in rice: Analysis of baseline lead levels in market and field collected rice grains. Science of the<br>Total Environment, 2014, 485-486, 428-434.                                             | 8.0             | 78           |
| 64 | Selenium accumulation and speciation in biofortified chickpea ( <i>Cicer arietinum</i> L.) under<br>Mediterranean conditions. Journal of the Science of Food and Agriculture, 2014, 94, 1101-1106. | 3.5             | 60           |
| 65 | Distribution and Speciation of Iron and Zinc in Grain of Two Wheat Genotypes. Journal of<br>Agricultural and Food Chemistry, 2014, 62, 708-716.                                                    | 5.2             | 70           |
| 66 | Effects of Nitrogen on the Distribution and Chemical Speciation of Iron and Zinc in Pearling<br>Fractions of Wheat Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 4738-4746.         | 5.2             | 50           |
| 67 | Selenium Speciation in Malt, Wort, and Beer Made from Selenium-Biofortified Two-Rowed Barley<br>Grain. Journal of Agricultural and Food Chemistry, 2014, 62, 5948-5953.                            | 5.2             | 33           |
| 68 | High resolution SIMS analysis of arsenic in rice. Surface and Interface Analysis, 2013, 45, 309-311.                                                                                               | 1.8             | 12           |
| 69 | Modelling the effects of copper on soil organisms and processes using the free ion approach:<br>Towards a multi-species toxicity model. Environmental Pollution, 2013, 178, 244-253.               | 7.5             | 34           |
| 70 | Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Frontiers in Microbiology, 2013, 4, 104.                      | 3.5             | 86           |
| 71 | Variation in Rice Cadmium Related to Human Exposure. Environmental Science & Technology, 2013, 47, 5613-5618.                                                                                      | 10.0            | 365          |
| 72 | Historical arsenic contamination of soil due to long-term phosphate fertiliser applications.<br>Environmental Pollution, 2013, 180, 259-264.                                                       | 7.5             | 59           |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Arsenic Methylation in Soils and Its Relationship with Microbial <i>arsM</i> Abundance and Diversity, and As Speciation in Rice. Environmental Science & Technology, 2013, 47, 7147-7154. | 10.0 | 166       |
| 74 | Evidence for effects of manufactured nanomaterials on crops is inconclusive. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3336-E3336.     | 7.1  | 16        |
| 75 | Selenium speciation in soil extracts using LC-ICP-MS. International Journal of Environmental Analytical Chemistry, 2012, 92, 222-236.                                                     | 3.3  | 32        |
| 76 | Biofortification of zinc in wheat grain by the application of sewage sludge. Plant and Soil, 2012, 361, 97-108.                                                                           | 3.7  | 19        |
| 77 | Grain and shoot zinc accumulation in winter wheat affected by nitrogen management. Plant and Soil, 2012, 361, 153-163.                                                                    | 3.7  | 103       |
| 78 | Contrasting effects of dwarfing alleles and nitrogen availability on mineral concentrations in wheat grain. Plant and Soil, 2012, 360, 93-107.                                            | 3.7  | 25        |
| 79 | Knocking Out ACR2 Does Not Affect Arsenic Redox Status in Arabidopsis thaliana: Implications for As Detoxification and Accumulation in Plants. PLoS ONE, 2012, 7, e42408.                 | 2.5  | 34        |
| 80 | Methylated arsenic species in plants originate from soil microorganisms. New Phytologist, 2012, 193, 665-672.                                                                             | 7.3  | 312       |
| 81 | Variation in grain arsenic assessed in a diverse panel of rice ( <i>Oryza sativa</i> ) grown in multiple<br>sites. New Phytologist, 2012, 193, 650-664.                                   | 7.3  | 126       |
| 82 | Effect of long-term equilibration on the toxicity of molybdenum to soil organisms. Environmental Pollution, 2012, 162, 1-7.                                                               | 7.5  | 37        |
| 83 | Phytochelatins play a key role in arsenic accumulation and tolerance in the aquatic macrophyte<br>Wolffia globosa. Environmental Pollution, 2012, 165, 18-24.                             | 7.5  | 47        |
| 84 | A multi-technique investigation of copper and zinc distribution, speciation and potential bioavailability in biosolids. Environmental Pollution, 2012, 166, 57-64.                        | 7.5  | 52        |
| 85 | Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. Journal of Cereal Science, 2012, 55, 183-187.                                                  | 3.7  | 59        |
| 86 | Arsenic translocation in rice investigated using radioactive 73As tracer. Plant and Soil, 2012, 350, 413-420.                                                                             | 3.7  | 66        |
| 87 | Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant<br>and Soil, 2012, 352, 173-184.                                                         | 3.7  | 99        |
| 88 | Selenium Hyperaccumulator Plants Stanleya pinnata and Astragalus bisulcatus Are Colonized by<br>Se-Resistant, Se-Excluding Wasp and Beetle Seed Herbivores. PLoS ONE, 2012, 7, e50516.    | 2.5  | 37        |
| 89 | Assessing the Labile Arsenic Pool in Contaminated Paddy Soils by Isotopic Dilution Techniques and<br>Simple Extractions. Environmental Science & Technology, 2011, 45, 4262-4269.         | 10.0 | 75        |
| 90 | High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots   Â. Plant Physiology, 2011, 156, 913-924.          | 4.8  | 122       |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Evaluation of an electrostatic toxicity model for predicting Ni2+ toxicity to barley root elongation in hydroponic cultures and in soils. New Phytologist, 2011, 192, 414-427.                                                                       | 7.3  | 23        |
| 92  | Long-term impacts of zinc and copper enriched sewage sludge additions on bacterial, archaeal and fungal communities in arable and grassland soils. Soil Biology and Biochemistry, 2011, 43, 932-941.                                                 | 8.8  | 65        |
| 93  | The dynamics of arsenic in four paddy fields in the Bengal delta. Environmental Pollution, 2011, 159, 947-953.                                                                                                                                       | 7.5  | 95        |
| 94  | Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 2011, 159, 3739-3743.                                                                                     | 7.5  | 98        |
| 95  | Selenium concentration and speciation in biofortified flour and bread: Retention of selenium during grain biofortification, processing and production of Se-enriched food. Food Chemistry, 2011, 126, 1771-1778.                                     | 8.2  | 110       |
| 96  | Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice Â.<br>Plant Physiology, 2011, 157, 498-508.                                                                                                        | 4.8  | 299       |
| 97  | Development of a Real-Time PCR Assay for Detection and Quantification of Rhizobium leguminosarum<br>Bacteria and Discrimination between Different Biovars in Zinc-Contaminated Soil. Applied and<br>Environmental Microbiology, 2011, 77, 4626-4633. | 3.1  | 24        |
| 98  | Arsenic as a Food Chain Contaminant: Mechanisms of Plant Uptake and Metabolism and Mitigation<br>Strategies. Annual Review of Plant Biology, 2010, 61, 535-559.                                                                                      | 18.7 | 1,023     |
| 99  | Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant and Soil, 2010, 328, 27-34.                                                                                                                                 | 3.7  | 277       |
| 100 | Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 2010, 332, 19-30.                                                                                        | 3.7  | 84        |
| 101 | Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil, 2010, 332, 31-40.                                                                                                                                        | 3.7  | 70        |
| 102 | Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) by liquid or granular Se<br>fertilisation. Plant and Soil, 2010, 332, 5-18.                                                                                           | 3.7  | 242       |
| 103 | Impacts of sulphur nutrition on selenium and molybdenum concentrations in wheat grain. Journal of<br>Cereal Science, 2010, 52, 111-113.                                                                                                              | 3.7  | 26        |
| 104 | Relative impact of soil, metal source and metal concentration on bacterial community structure and community tolerance. Soil Biology and Biochemistry, 2010, 42, 1408-1417.                                                                          | 8.8  | 19        |
| 105 | Predicting molybdenum toxicity to higher plants: Influence of soil properties. Environmental<br>Pollution, 2010, 158, 3095-3102.                                                                                                                     | 7.5  | 61        |
| 106 | Predicting molybdenum toxicity to higher plants: Estimation of toxicity threshold values.<br>Environmental Pollution, 2010, 158, 3085-3094.                                                                                                          | 7.5  | 60        |
| 107 | The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytologist, 2010, 186, 392-399.                                                                                                                                              | 7.3  | 196       |
| 108 | Influence of Sulfur Deficiency on the Expression of Specific Sulfate Transporters and the<br>Distribution of Sulfur, Selenium, and Molybdenum in Wheat. Plant Physiology, 2010, 153, 327-336.                                                        | 4.8  | 151       |

| #   | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Complexation of Arsenite with Phytochelatins Reduces Arsenite Efflux and Translocation from Roots to Shoots in Arabidopsis. Plant Physiology, 2010, 152, 2211-2221.                                                             | 4.8  | 206       |
| 110 | Arsenic Speciation in Phloem and Xylem Exudates of Castor Bean. Plant Physiology, 2010, 154, 1505-1513.                                                                                                                         | 4.8  | 104       |
| 111 | Molecular Mechanisms of Selenium Tolerance and Hyperaccumulation in <i>Stanleya pinnata</i> .<br>Plant Physiology, 2010, 153, 1630-1652.                                                                                        | 4.8  | 210       |
| 112 | Accumulation, Distribution, and Speciation of Arsenic in Wheat Grain. Environmental Science &<br>Technology, 2010, 44, 5464-5468.                                                                                               | 10.0 | 86        |
| 113 | Arsenic Bioavailability to Rice Is Elevated in Bangladeshi Paddy Soils. Environmental Science &<br>Technology, 2010, 44, 8515-8521.                                                                                             | 10.0 | 139       |
| 114 | Arsenic Influence on Genetic Variation in Grain Trace-Element Nutrient Content in Bengal Delta<br>Grown Rice. Environmental Science & Technology, 2010, 44, 8284-8288.                                                          | 10.0 | 29        |
| 115 | Arsenic Shoot-Grain Relationships in Field Grown Rice Cultivars. Environmental Science &<br>Technology, 2010, 44, 1471-1477.                                                                                                    | 10.0 | 54        |
| 116 | Selenium Speciation in Soil and Rice: Influence of Water Management and Se Fertilization. Journal of<br>Agricultural and Food Chemistry, 2010, 58, 11837-11843.                                                                 | 5.2  | 118       |
| 117 | NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytologist, 2010, 185, 434-445.                                                                                                                                 | 7.3  | 126       |
| 118 | Biofortification and phytoremediation. Current Opinion in Plant Biology, 2009, 12, 373-380.                                                                                                                                     | 7.1  | 277       |
| 119 | Heavy metals and soil microbes. Soil Biology and Biochemistry, 2009, 41, 2031-2037.                                                                                                                                             | 8.8  | 373       |
| 120 | Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. Journal of Cereal Science, 2009, 49, 290-295.                                                                                      | 3.7  | 423       |
| 121 | Effect of nitrogen form on the rhizosphere dynamics and uptake of cadmium and zinc by the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 2009, 318, 205-215.                                                            | 3.7  | 131       |
| 122 | Arsenic uptake and metabolism in plants. New Phytologist, 2009, 181, 777-794.                                                                                                                                                   | 7.3  | 973       |
| 123 | Arsenite efflux is not enhanced in the arsenateâ€ŧolerant phenotype of <i>Holcus lanatus</i> . New<br>Phytologist, 2009, 183, 340-348.                                                                                          | 7.3  | 53        |
| 124 | Toxicity of Trace Metals in Soil as Affected by Soil Type and Aging After Contamination: Using Calibrated Bioavailability Models to Set Ecological Soil Standards. Environmental Toxicology and Chemistry, 2009, 28, 1633-1642. | 4.3  | 333       |
| 125 | Response to the Comment by Van Geen and Duxbury. Environmental Science & Technology, 2009, 43, 3972-3973.                                                                                                                       | 10.0 | 3         |
| 126 | Modelling phytoremediation by the hyperaccumulating fern, Pteris vittata, of soils historically contaminated with arsenic. Environmental Pollution, 2009, 157, 1589-1596.                                                       | 7.5  | 76        |

| #   | Article                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 2009, 75, 979-986.                                                                                                                                                               | 8.2  | 127       |
| 128 | Mitigation of Arsenic Accumulation in Rice with Water Management and Silicon Fertilization.<br>Environmental Science & Technology, 2009, 43, 3778-3783.                                                                                                                  | 10.0 | 356       |
| 129 | Environmental and Genetic Control of Arsenic Accumulation and Speciation in Rice Grain: Comparing<br>a Range of Common Cultivars Grown in Contaminated Sites Across Bangladesh, China, and India.<br>Environmental Science & Technology, 2009, 43, 8381-8386.            | 10.0 | 146       |
| 130 | Identification of Low Inorganic and Total Grain Arsenic Rice Cultivars from Bangladesh.<br>Environmental Science & Technology, 2009, 43, 6070-6075.                                                                                                                      | 10.0 | 151       |
| 131 | The Rice Aquaporin Lsi1 Mediates Uptake of Methylated Arsenic Species Â. Plant Physiology, 2009, 150, 2071-2080.                                                                                                                                                         | 4.8  | 350       |
| 132 | METHODS FOR THE ANALYSIS OF SELENIUM AND OTHER MINERALS. , 2009, , 95-111.                                                                                                                                                                                               |      | 0         |
| 133 | Low biodegradability of fluoxetine HCl, diazepam and their human metabolites in sewage sludge-amended soil. Journal of Soils and Sediments, 2008, 8, 217-230.                                                                                                            | 3.0  | 86        |
| 134 | Evidence of decreasing mineral density in wheat grain over the last 160 years. Journal of Trace<br>Elements in Medicine and Biology, 2008, 22, 315-324.                                                                                                                  | 3.0  | 373       |
| 135 | Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist, 2008, 178, 92-102.                                                                                                                                           | 7.3  | 593       |
| 136 | Variation in rootâ€ŧoâ€shoot translocation of cadmium and zinc among different accessions of the<br>hyperaccumulators <i>Thlaspi caerulescens </i> and <i> Thlaspi praecox</i> . New Phytologist, 2008,<br>178, 315-325.                                                 | 7.3  | 90        |
| 137 | Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator <i>Pteris vittata</i> .<br>New Phytologist, 2008, 180, 434-441.                                                                                                                             | 7.3  | 161       |
| 138 | Historical changes in the concentrations of selenium in soil and wheat grain from the Broadbalk experiment over the last 160Âyears. Science of the Total Environment, 2008, 389, 532-538.                                                                                | 8.0  | 44        |
| 139 | Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments<br>with sewage sludge cake, metal-amended liquid sludge or metal salts: Effects of zinc, copper and<br>cadmium. Soil Biology and Biochemistry, 2008, 40, 1670-1680. | 8.8  | 52        |
| 140 | Growing Rice Aerobically Markedly Decreases Arsenic Accumulation. Environmental Science &<br>Technology, 2008, 42, 5574-5579.                                                                                                                                            | 10.0 | 567       |
| 141 | Atmospheric SO <sub>2</sub> Emissions Since the Late 1800s Change Organic Sulfur Forms in Humic Substance Extracts of Soils. Environmental Science & Technology, 2008, 42, 3550-3555.                                                                                    | 10.0 | 44        |
| 142 | Speciation of zinc in contaminated soils. Environmental Pollution, 2008, 155, 208-216.                                                                                                                                                                                   | 7.5  | 54        |
| 143 | Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley<br>(Hordeum vulgare L.) in different soils. Environmental Pollution, 2008, 156, 883-890.                                                                           | 7.5  | 43        |
| 144 | Does cadmium play a physiological role in the hyperaccumulator Thlaspi caerulescens?. Chemosphere, 2008, 71, 1276-1283.                                                                                                                                                  | 8.2  | 84        |

| #   | Article                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the United States of America, 2008, 105, 9931-9935.                                           | 7.1  | 1,202     |
| 146 | Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 2007, 58, 1717-1728.        | 4.8  | 119       |
| 147 | Phytotoxicity of nickel in a range of European soils: Influence of soil properties, Ni solubility and speciation. Environmental Pollution, 2007, 145, 596-605.                                      | 7.5  | 150       |
| 148 | Estimates of ambient background concentrations of trace metals in soils for risk assessment.<br>Environmental Pollution, 2007, 148, 221-229.                                                        | 7.5  | 80        |
| 149 | Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens: Development of a predictive model. Environmental Pollution, 2007, 150, 363-372.        | 7.5  | 71        |
| 150 | Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere, 2007, 66, 1415-1423.                                                                           | 8.2  | 82        |
| 151 | Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist, 2007, 176, 590-599.                                                                                             | 7.3  | 340       |
| 152 | Effects of soil compaction and irrigation on the concentrations of selenium and arsenic in wheat grains. Science of the Total Environment, 2007, 372, 433-439.                                      | 8.0  | 62        |
| 153 | Phytoextraction of cadmium and zinc by Salix from soil historically amended with sewage sludge.<br>Plant and Soil, 2007, 290, 157-172.                                                              | 3.7  | 71        |
| 154 | Terrestrial Biotic Ligand Model. 2. Application to Ni and Cu Toxicities to Plants, Invertebrates, and<br>Microbes in Soil. Environmental Science & Technology, 2006, 40, 7094-7100.                 | 10.0 | 164       |
| 155 | A Terrestrial Biotic Ligand Model. 1. Development and Application to Cu and Ni Toxicities to Barley<br>Root Elongation in Soils. Environmental Science & Technology, 2006, 40, 7085-7093.           | 10.0 | 224       |
| 156 | Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens.<br>Environmental Pollution, 2006, 139, 167-175.                                                           | 7.5  | 127       |
| 157 | Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006, 141, 115-125.                         | 7.5  | 268       |
| 158 | Field evaluation of in situ remediation of a heavy metal contaminated soil using lime and red-mud.<br>Environmental Pollution, 2006, 142, 530-539.                                                  | 7.5  | 365       |
| 159 | Initial results from a long-term, multi-site field study of the effects on soil fertility and microbial activity of sludge cakes containing heavy metals. Soil Use and Management, 2006, 22, 11-21. | 4.9  | 50        |
| 160 | Initial results from long-term field studies at three sites on the effects of heavy metal-amended liquid sludges on soil microbial activity. Soil Use and Management, 2006, 22, 180-187.            | 4.9  | 27        |
| 161 | Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist, 2006, 172, 646-654.                                                                       | 7.3  | 212       |
| 162 | Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant,<br>Cell and Environment, 2006, 29, 1422-1429.                                                   | 5.7  | 62        |

| #   | Article                                                                                                                                                                                              | IF                | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|
| 163 | SOIL FACTORS CONTROLLING THE EXPRESSION OF COPPER TOXICITY TO PLANTS IN A WIDE RANGE OF EUROPEAN SOILS. Environmental Toxicology and Chemistry, 2006, 25, 726.                                       | 4.3               | 159          |
| 164 | COMPARISON OF SOIL SOLUTION SPECIATION AND DIFFUSIVE GRADIENTS IN THIN-FILMS MEASUREMENT AS AN INDICATOR OF COPPER BIOAVAILABILITY TO PLANTS. Environmental Toxicology and Chemistry, 2006, 25, 733. | 4.3               | 83           |
| 165 | KINETICS OF METAL FIXATION IN SOILS: MEASUREMENT AND MODELING BY ISOTOPIC DILUTION.<br>Environmental Toxicology and Chemistry, 2006, 25, 659.                                                        | 4.3               | 39           |
| 166 | INFLUENCE OF SOIL PROPERTIES AND AGING ON ARSENIC PHYTOTOXICITY. Environmental Toxicology and Chemistry, 2006, 25, 1663.                                                                             | 4.3               | 80           |
| 167 | Sulphur speciation and turnover in soils: evidence from sulphur K-edge XANES spectroscopy and isotope dilution studies. Soil Biology and Biochemistry, 2006, 38, 1000-1007.                          | 8.8               | 75           |
| 168 | Effects of sulphur on yield and malting quality of barley. Journal of Cereal Science, 2006, 43, 369-377.                                                                                             | 3.7               | 45           |
| 169 | Biofortification of UK food crops with selenium. Proceedings of the Nutrition Society, 2006, 65, 169-181.                                                                                            | 1.0               | 378          |
| 170 | Spatial Imaging, Speciation, and Quantification of Selenium in the Hyperaccumulator Plants<br>Astragalus bisulcatus and Stanleya pinnata. Plant Physiology, 2006, 142, 124-134.                      | 4.8               | 261          |
| 171 | COMPARISON OF DIFFERENT MICROBIAL BIOASSAYS TO ASSESS METAL-CONTAMINATED SOILS.<br>Environmental Toxicology and Chemistry, 2005, 24, 530.                                                            | 4.3               | 23           |
| 172 | Comparison of root absorption, translocation and tolerance of arsenic in the hyperaccumulator<br>Pteris vittata and the nonhyperaccumulator Pteris tremula. New Phytologist, 2005, 165, 755-761.     | 7.3               | 92           |
| 173 | Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips () Tj ETQq1 1 0.7                                                                                         | '843]4 rgE<br>7.3 | BT /Qverlock |
| 174 | Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biology and Biochemistry, 2005, 37, 2334-2336.                                                                  | 8.8               | 101          |
| 175 | Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi<br>caerulescens. Planta, 2005, 220, 731-736.                                                        | 3.2               | 217          |
| 176 | Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta, 2005, 221, 928-936.                                            | 3.2               | 95           |
| 177 | Sulphur fractionation in calcareous soils and bioavailability to plants. Plant and Soil, 2005, 268, 103-109.                                                                                         | 3.7               | 49           |
| 178 | Evaluating a â€~Free Ion Activity Model' applied to metal uptake by Lolium perenne L. grown in contaminated soils Plant and Soil, 2005, 270, 1-12.                                                   | 3.7               | 73           |
| 179 | An inter-laboratory study to test the ability of amendments to reduce the availability of Cd, Pb, and Zn in situ. Environmental Pollution, 2005, 138, 34-45.                                         | 7.5               | 208          |
| 180 | Speciation and solubility of Cu, Ni and Pb in contaminated soils. European Journal of Soil Science, 2004, 55, 579-590.                                                                               | 3.9               | 57           |

| #   | Article                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Enhanced dissipation of chrysene in planted soil: the impact of a rhizobial inoculum. Soil Biology and Biochemistry, 2004, 36, 33-38.                                                                                                         | 8.8  | 100       |
| 182 | POLLUTION-INDUCED COMMUNITY TOLERANCE OF SOIL MICROBES IN RESPONSE TO A ZINC GRADIENT.<br>Environmental Toxicology and Chemistry, 2004, 23, 2665.                                                                                             | 4.3  | 43        |
| 183 | Kinetics of Zn Release in Soils and Prediction of Zn Concentration in Plants Using Diffusive Gradients<br>in Thin Films. Environmental Science & Technology, 2004, 38, 3608-3613.                                                             | 10.0 | 137       |
| 184 | Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environmental Pollution, 2004, 128, 307-315.                                                                      | 7.5  | 175       |
| 185 | Factors affecting the concentrations of lead in British wheat and barley grain. Environmental Pollution, 2004, 131, 461-468.                                                                                                                  | 7.5  | 59        |
| 186 | Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilisation. Environmental Pollution, 2004, 132, 113-120.                                                                | 7.5  | 98        |
| 187 | A new method for the determination of the34S/32S ratio of water-soluble sulphur in soil.<br>International Journal of Environmental Analytical Chemistry, 2004, 84, 323-329.                                                                   | 3.3  | 2         |
| 188 | Coâ€segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses. New Phytologist, 2004, 163, 299-312.                                                                                                 | 7.3  | 65        |
| 189 | Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties. Journal of Environmental Quality, 2004, 33, 532-541.                                                                                                       | 2.0  | 218       |
| 190 | Assessment of the Use of Industrial Byâ€Products to Remediate a Copper―and Arsenic ontaminated Soil.<br>Journal of Environmental Quality, 2004, 33, 902-910.                                                                                  | 2.0  | 85        |
| 191 | Predicting Cadmium Concentrations in Wheat and Barley Grain Using Soil Properties. Journal of Environmental Quality, 2004, 33, 532.                                                                                                           | 2.0  | 62        |
| 192 | Title is missing!. Plant and Soil, 2003, 249, 37-43.                                                                                                                                                                                          | 3.7  | 370       |
| 193 | COMPARISON OF TOXICITY OF ZINC FOR SOIL MICROBIAL PROCESSES BETWEEN LABORATORY-CONTAMINED AND POLLUTED FIELD SOILS. Environmental Toxicology and Chemistry, 2003, 22, 2592.                                                                   | 4.3  | 60        |
| 194 | Survival and plasmid stability of rhizobia introduced into a contaminated soil. Soil Biology and Biochemistry, 2003, 35, 49-54.                                                                                                               | 8.8  | 18        |
| 195 | Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in<br>Biotechnology, 2003, 14, 277-282.                                                                                                                     | 6.6  | 908       |
| 196 | Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New<br>Phytologist, 2003, 158, 279-285.                                                                                                           | 7.3  | 135       |
| 197 | The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytologist, 2003, 159, 403-410.                                                                                                                  | 7.3  | 231       |
| 198 | Lability of Cd, Cu, and Zn in Polluted Soils Treated with Lime, Beringite, and Red Mud and Identification of a Non-Labile Colloidal Fraction of Metals Using Isotopic Techniques. Environmental Science & amp; Technology, 2003, 37, 979-984. | 10.0 | 190       |

| #   | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | Predicting the activity of Cd2+ and Zn2+ in soil pore water from the radio-labile metal fraction.<br>Geochimica Et Cosmochimica Acta, 2003, 67, 375-385.                                                                   | 3.9  | 127       |
| 200 | A Practical Evaluation of Microwave and Conventional Wet Digestion Techniques for the<br>Determination of Cd, Cu And Zn in Wheat Grain. International Journal of Environmental Analytical<br>Chemistry, 2003, 83, 307-314. | 3.3  | 8         |
| 201 | Accumulation and distribution of aluminium and other elements in tea (Camellia sinensis) leaves.<br>Agronomy for Sustainable Development, 2003, 23, 705-710.                                                               | 0.8  | 60        |
| 202 | Stable Sulfur Isotope Ratio Indicates Longâ€Term Changes in Sulfur Deposition in the Broadbalk<br>Experiment since 1845. Journal of Environmental Quality, 2003, 32, 33-39.                                                | 2.0  | 44        |
| 203 | Stable Sulfur Isotope Ratio Indicates Long-Term Changes in Sulfur Deposition in the Broadbalk<br>Experiment since 1845. Journal of Environmental Quality, 2003, 32, 33.                                                    | 2.0  | 18        |
| 204 | Influence of Iron Status on Cadmium and Zinc Uptake by Different Ecotypes of the Hyperaccumulator<br>Thlaspi caerulescens. Plant Physiology, 2002, 128, 1359-1367.                                                         | 4.8  | 293       |
| 205 | Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi<br>caerulescens. Journal of Experimental Botany, 2002, 53, 535-543.                                                          | 4.8  | 328       |
| 206 | Phytoremediation of metals, metalloids, and radionuclides. Advances in Agronomy, 2002, 75, 1-56.                                                                                                                           | 5.2  | 386       |
| 207 | Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with<br>Phosphate, and Arsenic Speciation. Plant Physiology, 2002, 130, 1552-1561.                                                | 4.8  | 548       |
| 208 | Predicting Arsenic Solubility in Contaminated Soils Using Isotopic Dilution Techniques.<br>Environmental Science & Technology, 2002, 36, 982-988.                                                                          | 10.0 | 36        |
| 209 | Nematode communities under stress: the long-term effects of heavy metals in soil treated with sewage sludge. Applied Soil Ecology, 2002, 20, 27-42.                                                                        | 4.3  | 116       |
| 210 | In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002, 118, 435-443.                                                                                               | 7.5  | 297       |
| 211 | In situ fixation of metals in soils using bauxite residue: biological effects. Environmental Pollution, 2002, 118, 445-452.                                                                                                | 7.5  | 143       |
| 212 | Uptake of Metals by Plants Sharing a Rhizosphere with the HyperaccumulatorThlaspi caerulescens.<br>International Journal of Phytoremediation, 2002, 4, 267-281.                                                            | 3.1  | 54        |
| 213 | Evidence of low selenium concentrations in UK bread-making wheat grain. Journal of the Science of<br>Food and Agriculture, 2002, 82, 1160-1165.                                                                            | 3.5  | 106       |
| 214 | Arsenic hyperaccumulation by different fern species. New Phytologist, 2002, 156, 27-31.                                                                                                                                    | 7.3  | 361       |
| 215 | Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 2002, 156, 195-203.                                                                                             | 7.3  | 285       |
| 216 | Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. , 2002, , 207-214.                                                                                                               |      | 16        |

| #   | Article                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Soil Solid-Phase Controls Lead Activity in Soil Solution. Journal of Environmental Quality, 2002, 31, 162.                                                                           | 2.0  | 15        |
| 218 | Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 2001, 113, 111-120.                                                                            | 7.5  | 429       |
| 219 | Long-term effects of land use and fertiliser treatments on sulphur transformations in soils from the<br>Broadbalk experiment. Soil Biology and Biochemistry, 2001, 33, 1797-1804.    | 8.8  | 56        |
| 220 | USE OF THE ENRICHED STABLE ISOTOPE34S TO STUDY SULPHUR UPTAKE AND DISTRIBUTION IN WHEAT. Journal of Plant Nutrition, 2001, 24, 1551-1560.                                            | 1.9  | 20        |
| 221 | A New Method to Measure Effective Soil Solution Concentration Predicts Copper Availability to Plants. Environmental Science & amp; Technology, 2001, 35, 2602-2607.                  | 10.0 | 435       |
| 222 | Hyperaccumulation of Zn byThlaspi caerulescensCan Ameliorate Zn Toxicity in the Rhizosphere of<br>CocroppedThlaspi arvense. Environmental Science & Technology, 2001, 35, 3237-3241. | 10.0 | 83        |
| 223 | Cadmium Content of Wheat Grain from a Longâ€Term Field Experiment with Sewage Sludge. Journal of<br>Environmental Quality, 2001, 30, 1575-1580.                                      | 2.0  | 48        |
| 224 | Phytoremediation of Heavy Metal–Contaminated Soils: Natural Hyperaccumulation versus Chemically<br>Enhanced Phytoextraction. Journal of Environmental Quality, 2001, 30, 1919-1926.  | 2.0  | 493       |
| 225 | Temporal and spatial prediction of radiocaesium transfer to food products. Radiation and Environmental Biophysics, 2001, 40, 227-235.                                                | 1.4  | 33        |
| 226 | Trends in 13C/12C ratios and C isotope discrimination of wheat since 1845. Oecologia, 2001, 128, 336-342.                                                                            | 2.0  | 45        |
| 227 | Physiological evidence for a highâ€affinity cadmium transporter highly expressed in a Thlaspi<br>caerulescens ecotype. New Phytologist, 2001, 149, 53-60.                            | 7.3  | 254       |
| 228 | What's new about cadmium hyperaccumulation?. New Phytologist, 2001, 149, 2-3.                                                                                                        | 7.3  | 35        |
| 229 | Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil, 2001, 232, 207-214.                                                        | 3.7  | 455       |
| 230 | Zinc accumulation by Thlaspi caerulescens from soils with different Zn availability: a pot study. Plant and Soil, 2001, 236, 11-18.                                                  | 3.7  | 51        |
| 231 | Title is missing!. Plant and Soil, 2001, 237, 147-156.                                                                                                                               | 3.7  | 62        |
| 232 | The Relationship between Topsoil and Stream Sediment Heavy Metal Concentrations and Acidification.<br>Water, Air, and Soil Pollution, 2001, 130, 1067-1072.                          | 2.4  | 6         |
| 233 | Using plant analysis to predict yield losses caused by sulphur deficiency. Annals of Applied Biology, 2001, 138, 123-127.                                                            | 2.5  | 31        |
| 234 | Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany, 2001, 52, 2291-2300.     | 4.8  | 317       |

| #   | Article                                                                                                                                                                 | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Molybdenum Sequestration in BrassicaSpecies. A Role for Anthocyanins?. Plant Physiology, 2001, 126, 1391-1402.                                                          | 4.8  | 162       |
| 236 | INTER-LABORATORY COMPARISON OF SULPHUR AND NITROGEN ANALYSIS IN PLANTS AND SOILS.<br>Communications in Soil Science and Plant Analysis, 2001, 32, 685-695.              | 1.4  | 16        |
| 237 | Sulphur supply and the optimisation of the yield of wheat. , 2001, , 836-837.                                                                                           |      | 2         |
| 238 | Longâ€Term Changes in the Extractability and Bioavailability of Zinc and Cadmium after Sludge<br>Application. Journal of Environmental Quality, 2000, 29, 875-883.      | 2.0  | 129       |
| 239 | Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytologist, 2000, 145, 11-20.                                                 | 7.3  | 354       |
| 240 | Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens.<br>New Phytologist, 2000, 145, 199-210.                                | 7.3  | 222       |
| 241 | Determining uptake of â€~nonâ€labile' soil cadmium by Thlaspi caerulescens using isotopic dilution<br>techniques. New Phytologist, 2000, 146, 453-460.                  | 7.3  | 84        |
| 242 | Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment, 2000, 23, 507-514.                                                | 5.7  | 307       |
| 243 | Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiology Ecology, 2000, 33, 129-137.              | 2.7  | 70        |
| 244 | Title is missing!. Plant and Soil, 2000, 221, 167-179.                                                                                                                  | 3.7  | 116       |
| 245 | Availability of different forms of sulphur fertilisers to wheat and oilseed rape. Plant and Soil, 2000, 222, 139-147.                                                   | 3.7  | 28        |
| 246 | Title is missing!. Plant and Soil, 2000, 225, 95-107.                                                                                                                   | 3.7  | 90        |
| 247 | Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta, 2000, 212, 75-84.                      | 3.2  | 618       |
| 248 | Longâ€Term Effects of Land Use and Fertilizer Treatments on Sulfur Cycling. Journal of Environmental Quality, 2000, 29, 1867-1874.                                      | 2.0  | 55        |
| 249 | Response of a Rhizobium-based luminescence biosensor to Zn and Cu in soil solutions from sewage sludge treated soils. Soil Biology and Biochemistry, 2000, 32, 383-388. | 8.8  | 39        |
| 250 | Pentachlorophenol utilization by indigenous soil microorganisms. Soil Biology and Biochemistry, 2000, 32, 429-432.                                                      | 8.8  | 14        |
| 251 | Copper Speciation and Impacts on Bacterial Biosensors in the Pore Water of Copper-Contaminated Soils. Environmental Science & amp; Technology, 2000, 34, 5115-5121.     | 10.0 | 150       |
| 252 | Comparison of methods to investigate microbial populations in soils under different agricultural management. FEMS Microbiology Ecology, 2000, 33, 129-137.              | 2.7  | 4         |

| #   | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 253 | Cellular Compartmentation of Zinc in Leaves of the Hyperaccumulator Thlaspi caerulescens1. Plant<br>Physiology, 1999, 119, 305-312.                                                                              | 4.8  | 428       |
| 254 | Assessing Risks of Heavy Metal Toxicity in Agricultural Soils: Do Microbes Matter?. Human and<br>Ecological Risk Assessment (HERA), 1999, 5, 683-689.                                                            | 3.4  | 63        |
| 255 | Gene transfer in bacteria from soils contaminated with heavy metals. Letters in Applied Microbiology, 1999, 28, 317-320.                                                                                         | 2.2  | 6         |
| 256 | Sulphur Assimilation and Effects on Yield and Quality of Wheat. Journal of Cereal Science, 1999, 30, 1-17.                                                                                                       | 3.7  | 330       |
| 257 | Variation in the Breadmaking Quality and Rheological Properties of Wheat in Relation to Sulphur<br>Nutrition under Field Conditions. Journal of Cereal Science, 1999, 30, 19-31.                                 | 3.7  | 93        |
| 258 | Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.). Plant and Soil, 1999, 212, 207-217.                                                                                      | 3.7  | 55        |
| 259 | Metal uptake by plants from sludge-amended soils: caution is required in the plateau interpretation.<br>Plant and Soil, 1999, 216, 53-64.                                                                        | 3.7  | 59        |
| 260 | Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation<br>technique and a <i>lux</i> â€based biosensor. Environmental Toxicology and Chemistry, 1999, 18, 659-663. | 4.3  | 94        |
| 261 | Responses of breadmaking quality to sulphur in three wheat varieties. Journal of the Science of Food and Agriculture, 1999, 79, 1865-1874.                                                                       | 3.5  | 48        |
| 262 | Determination of Acute Zn Toxicity in Pore Water from Soils Previously Treated with Sewage Sludge<br>Using Bioluminescence Assays. Environmental Science & Technology, 1999, 33, 1880-1885.                      | 10.0 | 69        |
| 263 | Adverse Effects of Cadmium on Soil Microflora and Fauna. , 1999, , 199-218.                                                                                                                                      |      | 16        |
| 264 | Sampling To Monitor Soil In England And Wales. Quantitative Geology and Geostatistics, 1999, ,<br>465-476.                                                                                                       | 0.1  | 5         |
| 265 | ASSESSMENT OF THE TOXICITY OF METALS IN SOILS AMENDED WITH SEWAGE SLUDGE USING A CHEMICAL SPECIATION TECHNIQUE AND A lux-BASED BIOSENSOR. Environmental Toxicology and Chemistry, 1999, 18, 659.                 | 4.3  | 67        |
| 266 | Chrom und Nickel. , 1999, , 183-210.                                                                                                                                                                             |      | 2         |
| 267 | Title is missing!. Water, Air, and Soil Pollution, 1998, 102, 105-115.                                                                                                                                           | 2.4  | 30        |
| 268 | Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi<br>caerulescens. Plant, Cell and Environment, 1998, 21, 108-114.                                                 | 5.7  | 51        |
| 269 | Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.<br>Environmental Pollution, 1998, 99, 293-298.                                                           | 7.5  | 145       |
| 270 | Thiosulphate and tetrathionate oxidation in arable soils. Soil Biology and Biochemistry, 1998, 30, 553-559.                                                                                                      | 8.8  | 25        |

| #   | Article                                                                                                                                                                                            | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 271 | Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review.<br>Soil Biology and Biochemistry, 1998, 30, 1389-1414.                                         | 8.8  | 1,684     |
| 272 | Use of Sulfur Isotope Ratios To Determine Anthropogenic Sulfur Signals in a Grassland Ecosystem.<br>Environmental Science & Technology, 1998, 32, 2288-2291.                                       | 10.0 | 45        |
| 273 | In SituMeasurements of Solution Concentrations and Fluxes of Trace Metals in Soils Using DGT.<br>Environmental Science & Technology, 1998, 32, 704-710.                                            | 10.0 | 288       |
| 274 | Distribution of Sulfur within Oilseed Rape Leaves in Response to Sulfur Deficiency during Vegetative<br>Growth. Plant Physiology, 1998, 118, 1337-1344.                                            | 4.8  | 167       |
| 275 | Nitrogen to sulphur ratio in rapeseed and in rapeseed protein and its use in diagnosing sulphur deficiency. Journal of Plant Nutrition, 1997, 20, 549-558.                                         | 1.9  | 48        |
| 276 | Sulphur nutrition: An important factor for the quality of wheat and rapeseed. Soil Science and Plant<br>Nutrition, 1997, 43, 1137-1142.                                                            | 1.9  | 47        |
| 277 | Effectiveness and genetic diversity of Rhizobium leguminosarum bv. trifolii isolates in Portuguese soils polluted by industrial effluents. Soil Biology and Biochemistry, 1997, 29, 1209-1213.     | 8.8  | 20        |
| 278 | Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the<br>non-hyperaccumulator Thlaspi ochroleucum. Plant, Cell and Environment, 1997, 20, 898-906.                     | 5.7  | 257       |
| 279 | Cadmium and zinc in plants and soil solutions from contaminated soils. Plant and Soil, 1997, 189, 21-31.                                                                                           | 3.7  | 108       |
| 280 | Title is missing!. Plant and Soil, 1997, 188, 153-159.                                                                                                                                             | 3.7  | 259       |
| 281 | Title is missing!. Plant and Soil, 1997, 197, 71-78.                                                                                                                                               | 3.7  | 210       |
| 282 | Development of an acute and chronic ecotoxicity assay using lux â€marked Rhizobium leguminosarum<br>biovar trifolii. Letters in Applied Microbiology, 1997, 24, 296-300.                           | 2.2  | 51        |
| 283 | Sulphur nutrition: An important factor for the quality of wheat and rapeseed. , 1997, , 917-922.                                                                                                   |      | 8         |
| 284 | Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Applied and Environmental Microbiology, 1997, 63, 39-43. | 3.1  | 156       |
| 285 | Isotopic Character of Lead Deposited from the Atmosphere at a Grassland Site in the United Kingdom<br>Since 1860. Environmental Science & Technology, 1996, 30, 2511-2518.                         | 10.0 | 120       |
| 286 | Method to determine elemental sulphur in soils applied to measure sulphur oxidation. Soil Biology and Biochemistry, 1996, 28, 1083-1087.                                                           | 8.8  | 18        |
| 287 | Toxicity of organic compounds to the indigenous population of Rhizobium leguminosarum biovar<br>Trifolii in soil. Soil Biology and Biochemistry, 1996, 28, 1483-1487.                              | 8.8  | 22        |
| 288 | Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape ( <i>Brassica napus</i> ). Journal of Agricultural Science, 1996, 126, 53-62.             | 1.3  | 174       |

| #   | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 289 | DISJUNCTIVE KRIGING FOR ENVIRONMENTAL MANAGEMENT. Environmetrics, 1996, 7, 333-357.                                                                                                                                                                                 | 1.4  | 18        |
| 290 | Responses of two wheat varieties to sulphur addition and diagnosis of sulphur deficiency. Plant and Soil, 1996, 181, 317-327.                                                                                                                                       | 3.7  | 80        |
| 291 | Changes in the sulphur status of British wheat grain in the last decade, and its geographical distribution. Journal of the Science of Food and Agriculture, 1995, 68, 507-514.                                                                                      | 3.5  | 37        |
| 292 | Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of<br>Industrial Microbiology, 1995, 14, 94-104.                                                                                                                          | 0.9  | 368       |
| 293 | Changes in trace metal species and other components of the rhizosphere during growth of radish.<br>Plant, Cell and Environment, 1995, 18, 749-756.                                                                                                                  | 5.7  | 82        |
| 294 | A risk assessment of sulphur deficiency in cereals using soil and atmospheric deposition data. Soil Use and Management, 1995, 11, 110-114.                                                                                                                          | 4.9  | 87        |
| 295 | The influence of multiple sewage sludge amendments on the PCB content of an agricultural soil over time. Environmental Toxicology and Chemistry, 1995, 14, 553-560.                                                                                                 | 4.3  | 25        |
| 296 | A method to buffer the concentrations of free Zn and Cd ions using a cation exchange resin in bacterial toxicity studies. Environmental Toxicology and Chemistry, 1995, 14, 2033-2039.                                                                              | 4.3  | 28        |
| 297 | The Cadmium Content of British Wheat Grain. Journal of Environmental Quality, 1995, 24, 850-855.                                                                                                                                                                    | 2.0  | 45        |
| 298 | Speciation of Cadmium and Zinc with Application to Soil Solutions. Journal of Environmental Quality, 1995, 24, 183-190.                                                                                                                                             | 2.0  | 128       |
| 299 | Comparison of <i>aqua regia</i> digestion with sodium carbonate fusion for the determination of total phosphorus in soils by inductively coupled plasma atomic emission spectroscopy (ICP). Communications in Soil Science and Plant Analysis, 1995, 26, 1357-1368. | 1.4  | 84        |
| 300 | The Importance of Long and Short-Term Air-Soil Exchanges of Organic Contaminants. International<br>Journal of Environmental Analytical Chemistry, 1995, 59, 167-178.                                                                                                | 3.3  | 9         |
| 301 | Chlorobenzenes in field soil with a history of multiple sewage sludge applications. Environmental<br>Science & Technology, 1995, 29, 356-362.                                                                                                                       | 10.0 | 42        |
| 302 | PCDD/Fs and non-o-PCBs in digested U.K. sewage sludges. Chemosphere, 1995, 30, 51-67.                                                                                                                                                                               | 8.2  | 44        |
| 303 | Influence of EDTA complexation on plant uptake of manganese (II). Plant Science, 1995, 109, 231-235.                                                                                                                                                                | 3.6  | 14        |
| 304 | Chromium and Nickel. , 1995, , 152-178.                                                                                                                                                                                                                             |      | 78        |
| 305 | Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition ofAlyssum murale andRaphanus sativus L Plant and Soil, 1994, 166, 83-92.                                                                   | 3.7  | 63        |
| 306 | Extractable sulphate and organic sulphur in soils and their availability to plants. Plant and Soil, 1994, 164, 243-250.                                                                                                                                             | 3.7  | 126       |

| #   | Article                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 307 | Comparison of the chemical changes in the rhizosphere of the nickel hyperaccumulator Alyssum murale with the non-accumulator Raphanus sativus. Plant and Soil, 1994, 164, 251-259.                                                         | 3.7  | 82        |
| 308 | The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resources, Conservation and Recycling, 1994, 11, 41-49.                                                                 | 10.8 | 562       |
| 309 | Comparison of three wet digestion methods for the determination of plant sulphur by inductively<br>coupled plasma atomic emission spectroscopy (ICPâ€AES). Communications in Soil Science and Plant<br>Analysis, 1994, 25, 407-418.        | 1.4  | 288       |
| 310 | Comparison of sulphur uptake by oilseed rape and the soil sulphur status of two adjacent fields with<br>different soil series. Soil Use and Management, 1994, 10, 47-50.                                                                   | 4.9  | 11        |
| 311 | Applications of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. European Journal of Soil Science, 1994, 45, 159-165.                                                                     | 3.9  | 116       |
| 312 | Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. European Journal of Soil Science, 1994, 45, 431-438.                                                 | 3.9  | 74        |
| 313 | Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environmental Reviews, 1994, 2, 108-118.                                                                         | 4.5  | 182       |
| 314 | Long-term effects of metal contamination on soil microorganisms. Soil Biology and Biochemistry, 1994, 26, 421-422.                                                                                                                         | 8.8  | 13        |
| 315 | Modelling the Effect of Cultivation on the Dispersion of Pollutants in Soil. Journal of the Royal<br>Statistical Society: Series D (the Statistician), 1994, 43, 537.                                                                      | 0.2  | 2         |
| 316 | SCI agriculture and environmetn group symposium. Use and value of organic materials in agriculture.<br>Journal of the Science of Food and Agriculture, 1993, 63, 97-132.                                                                   | 3.5  | 1         |
| 317 | Heavy metals from past applications of sewage sludge decrease the genetic diversity of rhizobium leguminosarum biovar trifolii populations. Soil Biology and Biochemistry, 1993, 25, 1485-1490.                                            | 8.8  | 99        |
| 318 | Rhizobium meliloti is less sensitive to heavy-metal contamination in soil than R. leguminosarum bv.<br>trifolii or R. loti. Soil Biology and Biochemistry, 1993, 25, 273-278.                                                              | 8.8  | 40        |
| 319 | Enumeration of indigenous Rhizobium leguminosarum biovar Trifolii in soils previously treated with metal-contaminated sewage sludge. Soil Biology and Biochemistry, 1993, 25, 301-309.                                                     | 8.8  | 184       |
| 320 | Inoculation effects on legumes grown in soil previously treated with sewage sludge. Soil Biology and<br>Biochemistry, 1993, 25, 575-580.                                                                                                   | 8.8  | 38        |
| 321 | Screening of isolates and strains of <i>Rhizobium leguminosarum</i> biovar <i>Trifolii</i> for heavy<br>metal resistance using buffered media. Environmental Toxicology and Chemistry, 1993, 12, 1643-1651.                                | 4.3  | 12        |
| 322 | Long-term changes in the polychlorinated biphenyl content of United Kingdom soils. Environmental<br>Science & Technology, 1993, 27, 1918-1923.                                                                                             | 10.0 | 132       |
| 323 | The Potential for the Use of Metal-Accumulating Plants for the in Situ Decontamination of Metal-Polluted Soils. Soil & Environment, 1993, , 673-676.                                                                                       | 0.0  | 105       |
| 324 | An Interlaboratory Comparison of a Standardised EDTA Extraction Procedure for the Analysis of<br>Available Trace Elements in Two Quality Control Soils. International Journal of Environmental<br>Analytical Chemistry, 1993, 51, 153-160. | 3.3  | 15        |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Soil Quality in Relation to Agricultural Uses. Soil & Environment, 1993, , 187-200.                                                                                                                           | 0.0 | 11        |
| 326 | SCREENING OF ISOLATES AND STRAINS OF RHIZOBIUMLEGUMINOSARUM BIOVAR TRIFOLII FOR HEAVY METAL RESISTANCE USING BUFFERED MEDIA. Environmental Toxicology and Chemistry, 1993, 12, 1643.                          | 4.3 | 13        |
| 327 | The chlorobenzene content of archived sewage sludges. Science of the Total Environment, 1992, 121, 159-175.                                                                                                   | 8.0 | 16        |
| 328 | Contact uptake of metal compounds and their molluscicidal effect on the field slug, Deroceras reticulatum (Müller) (Pulmonata: Limacidae). Crop Protection, 1992, 11, 329-334.                                | 2.1 | 12        |
| 329 | Polynuclear aromatic hydrocarbons in crops from long-term field experiments amended with sewage sludge. Environmental Pollution, 1992, 76, 25-32.                                                             | 7.5 | 89        |
| 330 | Survival of the indigenous population of rhizobium leguminosarum biovar trifolii in soil spiked with<br>Cd, Zn, Cu and Ni salts. Soil Biology and Biochemistry, 1992, 24, 625-632.                            | 8.8 | 95        |
| 331 | Assessment of free-living nitrogen fixation activity as a biological indicator of heavy metal toxicity in soil. Soil Biology and Biochemistry, 1992, 24, 601-606.                                             | 8.8 | 61        |
| 332 | Metal tolerance of isolates of Rhizobium leguminosarum biovar Trifolii from soil contaminated by past applications of sewage sludge. Soil Biology and Biochemistry, 1992, 24, 83-88.                          | 8.8 | 59        |
| 333 | Effects of media components on toxicity of Cd to rhizobia. Water, Air, and Soil Pollution, 1992, 64, 627-633.                                                                                                 | 2.4 | 20        |
| 334 | Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil. Journal of Soil Science, 1992, 43, 313-321.                                                         | 1.2 | 245       |
| 335 | Influence of Complexation on the Uptake by Plants of Iron, Manganese, Copper and Zinc. Journal of<br>Experimental Botany, 1991, 42, 509-513.                                                                  | 4.8 | 71        |
| 336 | Studies of the distribution and bioavailability of soil zinc fractions. Journal of the Science of Food and Agriculture, 1991, 57, 325-334.                                                                    | 3.5 | 9         |
| 337 | Influence of Complexation on the Uptake by Plants of Iron, Manganese, Copper and Zinc. Journal of<br>Experimental Botany, 1991, 42, 515-519.                                                                  | 4.8 | 34        |
| 338 | New Culture Medium Containing Ionic Concentrations of Nutrients Similar to Concentrations Found in the Soil Solution. Applied and Environmental Microbiology, 1991, 57, 3674-3676.                            | 3.1 | 82        |
| 339 | Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biology and Biochemistry, 1990, 22, 871-873.                                    | 8.8 | 94        |
| 340 | Predicting the lime requirement of soils under permanent grassland and arable crops. Soil Use and<br>Management, 1989, 5, 54-58.                                                                              | 4.9 | 33        |
| 341 | An explanation for the apparent losses of metals in a long-term field experiment with sewage sludge.<br>Environmental Pollution, 1989, 60, 235-256.                                                           | 7.5 | 130       |
| 342 | Absence of nitrogen fixation in clover grown on soil subject to long-term contamination with heavy metals is due to survival of only ineffective Rhizobium. Soil Biology and Biochemistry, 1989, 21, 841-848. | 8.8 | 172       |

| #   | Article                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 343 | Pollution by toxic metals on agricultural soils. Nature, 1988, 335, 676-676.                                                                                                                                                                             | 27.8 | 34        |
| 344 | The effects of soil organic matter levels on soil solution concentrations and extractabilities of manganese, zinc and copper. Geoderma, 1988, 42, 177-188.                                                                                               | 5.1  | 121       |
| 345 | Effects of potentially toxic metals in soil derived from past applications of sewage sludge on nitrogen fixation by trifolium repens L. Soil Biology and Biochemistry, 1988, 20, 415-424.                                                                | 8.8  | 204       |
| 346 | Experimental measurements and computer predictions of copper complex formation by soluble soil organic matter. Environmental Pollution, 1988, 49, 63-76.                                                                                                 | 7.5  | 7         |
| 347 | Adenylate energy charge in metal-contaminated soil. Soil Biology and Biochemistry, 1987, 19, 219-220.                                                                                                                                                    | 8.8  | 24        |
| 348 | Zinc, copper and nickel concentrations in soil extracts and crops grown on four soils treated with metalloaded sewage sludges. Environmental Pollution, 1987, 44, 193-210.                                                                               | 7.5  | 71        |
| 349 | A survey of the sulphur content of wheat grown in Britain. Journal of the Science of Food and Agriculture, 1987, 38, 151-166.                                                                                                                            | 3.5  | 21        |
| 350 | Computerized quality control, statistics and regional mapping of the concentrations of trace and major elements in the soil of England and Wales. Soil Use and Management, 1987, 3, 31-38.                                                               | 4.9  | 11        |
| 351 | The use of acid insoluble residue to correct for the presence of soil-derived metals in the gut of earthworms used as bio-indicator organisms. Environmental Pollution Series A, Ecological and Biological, 1986, 42, 233-246.                           | 0.7  | 18        |
| 352 | Experimental determinations and computer predictions of trace metal ion concentrations in dilute complex solutions. Analyst, The, 1986, 111, 459.                                                                                                        | 3.5  | 29        |
| 353 | Metal residues in soils previously treated with sewage-sludge and their effects on growth and nitrogen fixation by blue-green algae. Soil Biology and Biochemistry, 1986, 18, 345-353.                                                                   | 8.8  | 86        |
| 354 | Soil microbial biomass estimates in soils contaminated with metals. Soil Biology and Biochemistry, 1986, 18, 383-388.                                                                                                                                    | 8.8  | 68        |
| 355 | Zinc, copper and nickel concentrations in ryegrass grown on sewage sludge-contaminated soils of different pH. Journal of the Science of Food and Agriculture, 1986, 37, 961-968.                                                                         | 3.5  | 70        |
| 356 | A simplified method for the extraction of the metals Fe, Zn, Cu, Ni, Cd, Pb, Cr, Co and Mn from soils<br>and sewage sludges. Journal of the Science of Food and Agriculture, 1985, 36, 794-798.                                                          | 3.5  | 531       |
| 357 | The effects of increasing yields on the macro- and microelement concentrations and offtakes in the grain of winter wheat. Journal of the Science of Food and Agriculture, 1985, 36, 1073-1083.                                                           | 3.5  | 39        |
| 358 | Metal concentrations in sludges and soil from a long-term field trial. Journal of Agricultural<br>Science, 1984, 103, 25-35.                                                                                                                             | 1.3  | 79        |
| 359 | Effect of metal toxicity on the size of the soil microbial biomass. Journal of Soil Science, 1984, 35, 341-346.                                                                                                                                          | 1.2  | 359       |
| 360 | A comparison of the extractabilities of Zn, Cu, Ni and Cr from sewage sludges prepared by treating<br>raw sewage with the metal salts before or after anaerobic digestion. Environmental Pollution Series<br>B: Chemical and Physical, 1982, 3, 193-198. | 0.7  | 13        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | THE INFLUENCE OF NITROGEN SOURCE ON THE TOLERANCE OF HOLCUS LANATUS L.* AND BROMUS ERECTUS HUDS. TO MANGANESE. New Phytologist, 1982, 91, 443-452.                                                       | 7.3 | 30        |
| 362 | THE UPTAKE AND TRANSLOCATION OF TRI-AND HEXA-VALENT CHROMIUM AND EFFECTS ON THE GROWTH OF OAT IN FLOWING NUTRIENT SOLUTION AND IN SOIL. New Phytologist, 1982, 92, 381-390.                              | 7.3 | 61        |
| 363 | The effects of interactions between cadmium and aluminium on the growth of two metal-tolerant races of Holcus lanatus L. Environmental Pollution Series A, Ecological and Biological, 1980, 23, 267-277. | 0.7 | 14        |