Richard Y Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7636905/publications.pdf

Version: 2024-02-01

516710 677142 1,632 21 16 22 h-index citations g-index papers 32 32 32 1376 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CuH-Catalyzed Olefin Functionalization: From Hydroamination to Carbonyl Addition. Accounts of Chemical Research, 2020, 53, 1229-1243.	15.6	233
2	Ligand–Substrate Dispersion Facilitates the Copper-Catalyzed Hydroamination of Unactivated Olefins. Journal of the American Chemical Society, 2017, 139, 16548-16555.	13.7	189
3	CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. Journal of the American Chemical Society, 2019, 141, 5062-5070.	13.7	151
4	Asymmetric Copper Hydride-Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl Heterocycles. Journal of the American Chemical Society, 2017, 139, 2192-2195.	13.7	145
5	Breaking the Base Barrier: An Electron-Deficient Palladium Catalyst Enables the Use of a Common Soluble Base in C–N Coupling. Journal of the American Chemical Society, 2018, 140, 4721-4725.	13.7	130
6	A Regio- and Enantioselective CuH-Catalyzed Ketone Allylation with Terminal Allenes. Journal of the American Chemical Society, $2018,140,2007-2011.$	13.7	109
7	Regiodivergent and Diastereoselective CuHâ€Catalyzed Allylation of Imines with Terminal Allenes. Angewandte Chemie - International Edition, 2016, 55, 14077-14080.	13.8	95
8	Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. Journal of the American Chemical Society, 2019, 141, 2251-2256.	13.7	95
9	The Quest for the Ideal Base: Rational Design of a Nickel Precatalyst Enables Mild, Homogeneous C–N Cross-Coupling. Journal of the American Chemical Society, 2020, 142, 4500-4507.	13.7	77
10	Engaging Aldehydes in CuHâ€Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3â€Diene Pronucleophiles. Angewandte Chemie - International Edition, 2019, 58, 17074-17080.	13.8	65
11	Pd-Catalyzed C–N Coupling Reactions Facilitated by Organic Bases: Mechanistic Investigation Leads to Enhanced Reactivity in the Arylation of Weakly Binding Amines. ACS Catalysis, 2019, 9, 3822-3830.	11.2	63
12	Mechanistic Insight Facilitates Discovery of a Mild and Efficient Copper-Catalyzed Dehydration of Primary Amides to Nitriles Using Hydrosilanes. Journal of the American Chemical Society, 2018, 140, 1627-1631.	13.7	62
13	Monophosphine Ligands Promote Pd-Catalyzed C–S Cross-Coupling Reactions at Room Temperature with Soluble Bases. ACS Catalysis, 2019, 9, 6461-6466.	11.2	55
14	CuH-Catalyzed Asymmetric Reduction of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carboxylic Acids to \hat{l}^2 -Chiral Aldehydes. Journal of the American Chemical Society, 2018, 140, 606-609.	13.7	45
15	Evidence for Simultaneous Dearomatization of Two Aromatic Rings under Mild Conditions in Cu(I)-Catalyzed Direct Asymmetric Dearomatization of Pyridine. Journal of the American Chemical Society, 2020, 142, 11252-11269.	13.7	33
16	Regiodivergent and Diastereoselective CuHâ€Catalyzed Allylation of Imines with Terminal Allenes. Angewandte Chemie, 2016, 128, 14283-14286.	2.0	18
17	Electrocatalytic Isoxazoline–Nanocarbon Metal Complexes. Journal of the American Chemical Society, 2021, 143, 10441-10453.	13.7	18
18	Trace Hydrogen Sulfide Sensing Inspired by Polyoxometalate-Mediated Aerobic Oxidation. ACS Central Science, 2021, 7, 1572-1580.	11.3	14

RICHARD Y LIU

#	Article	IF	CITATIONS
19	Copper-Catalyzed Enantioselective Hydroamination of Alkenes. Organic Syntheses, 2018, 95, 80-96.	1.0	12
20	Engaging Aldehydes in CuHâ€Catalyzed Reductive Coupling Reactions: Stereoselective Allylation with Unactivated 1,3â€Diene Pronucleophiles. Angewandte Chemie, 2019, 131, 17230-17236.	2.0	11
21	Solution-processable microporous polymer platform for heterogenization of diverse photoredox catalysts. Nature Communications, 2022, 13, .	12.8	11