
Davide Pisani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7635956/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science, 2011, 334, 1091-1097.	12.6	1,055
2	The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte. Current Biology, 2018, 28, 733-745.e2.	3.9	398
3	Molecular Timetrees Reveal a Cambrian Colonization of Land and a New Scenario for Ecdysozoan Evolution. Current Biology, 2013, 23, 392-398.	3.9	322
4	The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1435-1443.	4.0	286
5	Genomic data do not support comb jellies as the sister group to all other animals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15402-15407.	7.1	286
6	Dinosaurs and the Cretaceous Terrestrial Revolution. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2483-2490.	2.6	274
7	Integrated genomic and fossil evidence illuminates life's early evolution and eukaryote origin. Nature Ecology and Evolution, 2018, 2, 1556-1562.	7.8	274
8	Early photosynthetic eukaryotes inhabited low-salinity habitats. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7737-E7745.	7.1	244
9	Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Current Biology, 2017, 27, 3864-3870.e4.	3.9	244
10	The colonization of land by animals: molecular phylogeny and divergence times among arthropods. BMC Biology, 2004, 2, 1.	3.8	239
11	A congruent solution to arthropod phylogeny: phylogenomics, microRNAs and morphology support monophyletic Mandibulata. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 298-306.	2.6	227
12	MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15920-15924.	7.1	212
13	The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference. Genome Biology and Evolution, 2016, 8, 330-344.	2.5	195
14	Testing the Molecular Clock: Molecular and Paleontological Estimates of Divergence Times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 2006, 23, 1832-1851.	8.9	188
15	Metazoan opsin evolution reveals a simple route to animal vision. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18868-18872.	7.1	168
16	Bayesian methods outperform parsimony but at the expense of precision in the estimation of phylogeny from discrete morphological data. Biology Letters, 2016, 12, 20160081.	2.3	160
17	Phylogenetic-Signal Dissection of Nuclear Housekeeping Genes Supports the Paraphyly of Sponges and the Monophyly of Eumetazoa. Molecular Biology and Evolution, 2009, 26, 2261-2274.	8.9	158
18	Supertrees Disentangle the Chimerical Origin of Eukaryotic Genomes. Molecular Biology and Evolution, 2007, 24, 1752-1760.	8.9	157

#	Article	IF	CITATIONS
19	Ecdysozoan Mitogenomics: Evidence for a Common Origin of the Legged Invertebrates, the Panarthropoda. Genome Biology and Evolution, 2010, 2, 425-440.	2.5	154
20	Linking Genomics and Ecology to Investigate the Complex Evolution of an Invasive Drosophila Pest. Genome Biology and Evolution, 2013, 5, 745-757.	2.5	138
21	A molecular palaeobiological exploration of arthropod terrestrialization. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150133.	4.0	131
22	Serine Codon-Usage Bias in Deep Phylogenomics: Pancrustacean Relationships as a Case Study. Systematic Biology, 2013, 62, 121-133.	5.6	124
23	The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nature Reviews Microbiology, 2014, 12, 449-455.	28.6	124
24	miRNAs: Small Genes with Big Potential in Metazoan Phylogenetics. Molecular Biology and Evolution, 2013, 30, 2369-2382.	8.9	118
25	Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 2022, 9, 211771.	2.4	117
26	Heterogeneous Models Place the Root of the Placental Mammal Phylogeny. Molecular Biology and Evolution, 2013, 30, 2145-2156.	8.9	115
27	Uncertain-tree: discriminating among competing approaches to the phylogenetic analysis of phenotype data. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162290.	2.6	114
28	Toward consilience in reptile phylogeny: miRNAs support an archosaur, not lepidosaur, affinity for turtles. Evolution & Development, 2014, 16, 189-196.	2.0	106
29	Identifying and Removing Fast-Evolving Sites Using Compatibility Analysis: An Example from the Arthropoda. Systematic Biology, 2004, 53, 978-989.	5.6	101
30	Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nature Communications, 2019, 10, 2295.	12.8	90
31	The Shape of Supertrees to Come: Tree Shape Related Properties of Fourteen Supertree Methods. Systematic Biology, 2005, 54, 419-431.	5.6	88
32	Molecular clocks indicate turnover and diversification of modern coleoid cephalopods during the Mesozoic Marine Revolution. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162818.	2.6	86
33	Matrix Representation with Parsimony, Taxonomic Congruence, and Total Evidence. Systematic Biology, 2002, 51, 151-155.	5.6	85
34	The prokaryotic tree of life: past, present…and future?. Trends in Ecology and Evolution, 2008, 23, 276-281.	8.7	82
35	Congruence of Morphological and Molecular Phylogenies. Acta Biotheoretica, 2007, 55, 269-281.	1.5	80
36	The Evolution of Olfactory Gene Families in <i>Drosophila</i> and the Genomic Basis of chemical-Ecological Adaptation in <i>Drosophila suzukii</i> . Genome Biology and Evolution, 2016, 8, 2297-2311.	2.5	76

#	Article	IF	CITATIONS
37	Pancrustacean Evolution Illuminated by Taxon-Rich Genomic-Scale Data Sets with an Expanded Remipede Sampling. Genome Biology and Evolution, 2019, 11, 2055-2070.	2.5	76
38	The public goods hypothesis for the evolution of life on Earth. Biology Direct, 2011, 6, 41.	4.6	74
39	Measuring Support and Finding Unsupported Relationships in Supertrees. Systematic Biology, 2005, 54, 823-831.	5.6	70
40	Resolving phylogenetic signal from noise when divergence is rapid: A new look at the old problem of echinoderm class relationships. Molecular Phylogenetics and Evolution, 2012, 62, 27-34.	2.7	70
41	A supertree of Temnospondyli: cladogenetic patterns in the most species-rich group of early tetrapods. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 3087-3095.	2.6	68
42	A genus-level supertree of the Dinosauria. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 915-921.	2.6	67
43	Homeobox Gene Duplication and Divergence in Arachnids. Molecular Biology and Evolution, 2018, 35, 2240-2253.	8.9	66
44	The Comb Jelly Opsins and the Origins of Animal Phototransduction. Genome Biology and Evolution, 2014, 6, 1964-1971.	2.5	62
45	Probabilistic methods surpass parsimony when assessing clade support in phylogenetic analyses of discrete morphological data. Palaeontology, 2018, 61, 105-118.	2.2	61
46	Relative time scales reveal multiple origins of parallel disjunct distributions of African caecilian amphibians. Biology Letters, 2007, 3, 505-508.	2.3	59
47	Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan. Current Biology, 2019, 29, 1112-1125.e2.	3.9	58
48	Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Molecular Biology and Evolution, 2019, 36, 1344-1356.	8.9	56
49	Molecular paleobiological insights into the origin of the Brachiopoda. Evolution & Development, 2011, 13, 290-303.	2.0	55
50	Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20143034.	2.6	52
51	Deep Genomic-Scale Analyses of the Metazoa Reject Coelomata: Evidence from Single- and Multigene Families Analyzed Under a Supertree and Supermatrix Paradigm. Genome Biology and Evolution, 2010, 2, 310-324.	2.5	51
52	Implementing and testing Bayesian and maximum-likelihood supertree methods in phylogenetics. Royal Society Open Science, 2015, 2, 140436.	2.4	49
53	Eukaryogenesis and oxygen in Earth history. Nature Ecology and Evolution, 2022, 6, 520-532.	7.8	48
54	Reconstruction of Family-Level Phylogenetic Relationships within Demospongiae (Porifera) Using Nuclear Encoded Housekeeping Genes. PLoS ONE, 2013, 8, e50437.	2.5	47

#	Article	IF	CITATIONS
55	Probabilistic methods outperform parsimony in the phylogenetic analysis of data simulated without a probabilistic model. Palaeontology, 2019, 62, 1-17.	2.2	44
56	The Role of Homology and Orthology in the Phylogenomic Analysis of Metazoan Gene Content. Molecular Biology and Evolution, 2019, 36, 643-649.	8.9	44
57	A Cambrian–Ordovician Terrestrialization of Arachnids. Frontiers in Genetics, 2020, 11, 182.	2.3	43
58	Properties of Supertree Methods in the Consensus Setting. Systematic Biology, 2007, 56, 330-337.	5.6	41
59	Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. Genome Biology and Evolution, 2018, 10, 1457-1470.	2.5	41
60	Molecular evidence for dim-light vision in the last common ancestor of the vertebrates. Current Biology, 2006, 16, R318-R319.	3.9	39
61	The evolution of insect biodiversity. Current Biology, 2021, 31, R1299-R1311.	3.9	39
62	A Pluralistic Account of Homology: Adapting the Models to the Data. Molecular Biology and Evolution, 2014, 31, 501-516.	8.9	37
63	Concatabominations: Identifying Unstable Taxa in Morphological Phylogenetics using a Heuristic Extension to Safe Taxonomic Reduction. Systematic Biology, 2015, 64, 137-143.	5.6	37
64	A draft genome sequence of the elusive giant squid, Architeuthis dux. GigaScience, 2020, 9, .	6.4	37
65	Some Desiderata for Liberal Supertrees. Computational Biology, 2004, , 227-246.	0.2	35
66	Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity and Evolution, 2019, 19, 71-86.	1.6	33
67	Mitochondrial genomes illuminate the evolutionary history of the Western honey bee (Apis mellifera). Scientific Reports, 2020, 10, 14515.	3.3	32
68	Empirical realism of simulated data is more important than the model used to generate it: a reply to Goloboff <i>etÂal</i> Palaeontology, 2018, 61, 631-635.	2.2	29
69	Anhydrobiosis and Freezing-Tolerance: Adaptations That Facilitate the Establishment of Panagrolaimus Nematodes in Polar Habitats. PLoS ONE, 2015, 10, e0116084.	2.5	28
70	RelTime Rates Collapse to a Strict Clock When Estimating the Timeline of Animal Diversification. Genome Biology and Evolution, 2017, 9, 1320-1328.	2.5	25
71	Molecular palaeontology illuminates the evolution of ecdysozoan vision. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, .	2.6	25
72	The impact of fossil stratigraphic ranges on tipâ€calibration, and the accuracy and precision of divergence time estimates. Palaeontology, 2020, 63, 67-83.	2.2	25

#	Article	lF	CITATIONS
73	Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian–Triassic co-origination with insectivores. Royal Society Open Science, 2020, 7, 201689.	2.4	25
74	Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140337.	4.0	23
75	Data curation and modeling of compositional heterogeneity in insect phylogenomics: A case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution, 2020, 147, 106782.	2.7	23
76	The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data. Journal of the Geological Society, 2022, 179, .	2.1	21
77	Spectral Diversification and Trans-Species Allelic Polymorphism during the Land-to-Sea Transition in Snakes. Current Biology, 2020, 30, 2608-2615.e4.	3.9	20
78	The ring of life hypothesis for eukaryote origins is supported by multiple kinds of data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140323.	4.0	19
79	Parsimony and maximum-likelihood phylogenetic analyses of morphology do not generally integrate uncertainty in inferring evolutionary history: a response to Brown <i>et al.</i> . Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20171636.	2.6	19
80	Paradigm for Life. Science, 2007, 318, 1390-1391.	12.6	17
81	A Novel Approach to Investigate the Effect of Tree Reconstruction Artifacts in Single-Gene Analysis Clarifies Opsin Evolution in Nonbilaterian Metazoans. Genome Biology and Evolution, 2020, 12, 3906-3916.	2.5	17
82	<p>Fleas are parasitic scorpionflies</p> . Palaeoentomology, 2020, 3, 641-653.	1.0	17
83	MicroRNAs as Indicators into the Causes and Consequences of Whole-Genome Duplication Events. Molecular Biology and Evolution, 2022, 39, .	8.9	17
84	Phylogenomics of Opsin Genes in Diptera Reveals Lineage-Specific Events and Contrasting Evolutionary Dynamics in <i>Anopheles</i> and <i>Drosophila</i> . Genome Biology and Evolution, 2021, 13, .	2.5	16
85	Investigating Stagnation in Morphological Phylogenetics Using Consensus Data. Systematic Biology, 2007, 56, 125-129.	5.6	14
86	L.U.St: a tool for approximated maximum likelihood supertree reconstruction. BMC Bioinformatics, 2014, 15, 183.	2.6	14
87	Reply to Halanych et al.: Ctenophore misplacement is corroborated by independent datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E948-9.	7.1	14
88	Animal Evolution: Only Rocks Can Set the Clock. Current Biology, 2015, 25, R1079-R1081.	3.9	13
89	Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction. Nature Communications, 2021, 12, 5335.	12.8	13
90	An Overview of Arthropod Genomics, Mitogenomics, and the Evolutionary Origins of the Arthropod Proteome. , 2013, , 41-61.		10

#	Article	IF	CITATIONS
91	Evolutionary relationships of the Critically Endangered frog Ericabatrachus baleensisLargen, 1991 with notes on incorporating previously unsampled taxa into large-scale phylogenetic analyses. BMC Evolutionary Biology, 2014, 14, 44.	3.2	9
92	The Shape of Modern Tree Reconstruction Methods. Systematic Biology, 2014, 63, 436-441.	5.6	9
93	Reply to Nakov et al.: Model choice requires biological insight when studying the ancestral habitat of photosynthetic eukaryotes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10608-E10609.	7.1	9
94	Performance of A Priori and A Posteriori Calibration Strategies in Divergence Time Estimation. Genome Biology and Evolution, 2020, 12, 1087-1098.	2.5	9
95	Empirical distributions of homoplasy in morphological data. Palaeontology, 2021, 64, 505-518.	2.2	9
96	Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake. Genome Biology and Evolution, 2021, 13, .	2.5	8
97	Sensory Neuroscience: A Taste for Light and the Origin of Animal Vision. Current Biology, 2020, 30, R773-R775.	3.9	7
98	Diversification dynamics of total-, stem-, and crown-groups are compatible with molecular clock estimates of divergence times. Science Advances, 2021, 7, .	10.3	7
99	Estimation of phylogenetic divergence times in Panagrolaimidae and other nematodes using relaxed molecular clocks calibratedÂwith insect and crustacean fossils. Nematology, 2017, 19, 899-913.	0.6	6
100	Phylogenetic sampling affects evolutionary patterns of morphological disparity. Palaeontology, 2021, 64, 765-787.	2.2	6
101	New Tardigrade Opsins and Differential Expression Analyses Show Ontogenic Variation in Light Perception. Genome Biology and Evolution, 2021, 13, .	2.5	2
102	Deconstructing the tree of life. Trends in Ecology and Evolution, 2009, 24, 184-185.	8.7	0
103	The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. , 2009, , 15-23.		0