Gregory F Sonnenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7635465/publications.pdf

Version: 2024-02-01

61 papers

12,337 citations

38 h-index 61 g-index

62 all docs 62 docs citations 62 times ranked 15039 citing authors

#	Article	IF	CITATIONS
1	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-1054.	14.5	1,211
2	Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nature Immunology, 2011, 12, 383-390.	14.5	896
3	Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunology, 2011, 12, 1045-54.	14.5	875
4	Commensal Bacteria Calibrate the Activation Threshold of Innate Antiviral Immunity. Immunity, 2012, 37, 158-170.	14.3	817
5	Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature, 2015, 519, 242-246.	27.8	788
6	Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature, 2013, 498, 113-117.	27.8	639
7	Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria. Science, 2012, 336, 1321-1325.	12.6	638
8	TSLP Elicits IL-33–Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation. Science Translational Medicine, 2013, 5, 170ra16.	12.4	618
9	CD4+ Lymphoid Tissue-Inducer Cells Promote Innate Immunity in the Gut. Immunity, 2011, 34, 122-134.	14.3	531
10	Regulation of inflammation by microbiota interactions with the host. Nature Immunology, $2017, 18, 851-860$.	14.5	467
11	Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nature Medicine, 2015, 21, 698-708.	30.7	434
12	Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria–specific CD4 ⁺ T cells. Science, 2015, 348, 1031-1035.	12.6	421
13	Group 3 Innate Lymphoid Cells Inhibit T-Cell-Mediated Intestinal Inflammation through Aryl Hydrocarbon Receptor Signaling and Regulation of Microflora. Immunity, 2013, 39, 386-399.	14.3	343
14	Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. Journal of Experimental Medicine, 2010, 207, 1293-1305.	8.5	333
15	Innate Lymphoid Cell Interactions with Microbiota: Implications for Intestinal Health and Disease. Immunity, 2012, 37, 601-610.	14.3	244
16	T Cell Factor 1 Is Required for Group 2 Innate Lymphoid Cell Generation. Immunity, 2013, 38, 694-704.	14.3	214
17	Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature, 2013, 504, 153-157.	27.8	212
18	Transient inhibition of ROR- \hat{I}^3 t therapeutically limits intestinal inflammation by reducing TH17 cells and preserving group 3 innate lymphoid cells. Nature Medicine, 2016, 22, 319-323.	30.7	202

#	Article	IF	CITATIONS
19	Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature, 2019, 568, 405-409.	27.8	199
20	CCR7-dependent trafficking of $ROR\hat{I}^3$ + ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nature Communications, 2015, 6, 5862.	12.8	185
21	Functional interactions between innate lymphoid cells and adaptive immunity. Nature Reviews Immunology, 2019, 19, 599-613.	22.7	175
22	Functional Biology of the IL-22-IL-22R Pathway in Regulating Immunity and Inflammation at Barrier Surfaces. Advances in Immunology, 2010, 107, 1-29.	2.2	152
23	Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. Immunity, 2016, 44, 634-646.	14.3	126
24	Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell, 2021, 184, 5015-5030.e16.	28.9	102
25	Exome Sequencing Analysis Reveals Variants in Primary Immunodeficiency Genes in Patients With Very Early Onset Inflammatory Bowel Disease. Gastroenterology, 2015, 149, 1415-1424.	1.3	99
26	Host-Microbiota Interactions Shape Local and Systemic Inflammatory Diseases. Journal of Immunology, 2017, 198, 564-571.	0.8	99
27	Long-Term Engraftment and Expansion of Tumor-Derived Memory T Cells Following the Implantation of Non-Disrupted Pieces of Human Lung Tumor into NOD-scid IL2Rγnull Mice. Journal of Immunology, 2008, 180, 7009-7018.	0.8	91
28	Innate lymphoid cells: critical regulators of allergic inflammation and tissue repair in the lung. Current Opinion in Immunology, 2012, 24, 284-289.	5.5	91
29	Single Delivery of High-Diversity Fecal Microbiota Preparation by Colonoscopy Is Safe and Effective in Increasing Microbial Diversity in Active Ulcerative Colitis. Inflammatory Bowel Diseases, 2017, 23, 903-911.	1.9	91
30	Dendritic cell–derived hepcidin sequesters iron from the microbiota to promote mucosal healing. Science, 2020, 368, 186-189.	12.6	80
31	Persistent Enteric Murine Norovirus Infection Is Associated with Functionally Suboptimal Virus-Specific CD8 T Cell Responses. Journal of Virology, 2013, 87, 7015-7031.	3.4	79
32	Epithelial-intrinsic IKK $\hat{l}\pm$ expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. Journal of Experimental Medicine, 2015, 212, 1513-1528.	8.5	79
33	Anti-microbial Functions of Group 3 Innate Lymphoid Cells in Gut-Associated Lymphoid Tissues Are Regulated by G-Protein-Coupled Receptor 183. Cell Reports, 2018, 23, 3750-3758.	6.4	75
34	A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Science lmmunology, 2019, 4, .	11.9	71
35	Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunological Reviews, 2014, 260, 35-49.	6.0	60
36	Essential immunologic orchestrators of intestinal homeostasis. Science Immunology, 2018, 3, .	11.9	56

3

#	Article	IF	CITATIONS
37	SnapShot: Innate Lymphoid Cells. Immunity, 2013, 39, 622-622.e1.	14.3	55
38	Resistin-like Molecule \hat{l}_{\pm} Promotes Pathogenic Th17 Cell Responses and Bacterial-Induced Intestinal Inflammation. Journal of Immunology, 2013, 190, 2292-2300.	0.8	48
39	Activation and Suppression of Group 3 Innate Lymphoid Cells in the Gut. Trends in Immunology, 2020, 41, 721-733.	6.8	42
40	Maintaining Intestinal Health: The Genetics and Immunology of Very Early Onset Inflammatory Bowel Disease. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 462-476.	4.5	39
41	Regulation of the adaptive immune system by innate lymphoid cells. Current Opinion in Immunology, 2014, 27, 75-82.	5.5	38
42	The Group 3 Innate Lymphoid Cell Defect in Aryl Hydrocarbon Receptor Deficient Mice Is Associated with T Cell Hyperactivation during Intestinal Infection. PLoS ONE, 2015, 10, e0128335.	2.5	37
43	Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature, 2021, 600, 707-712.	27.8	35
44	ZBTB46 defines and regulates ILC3s that protect the intestine. Nature, 2022, 609, 159-165.	27.8	33
45	Group 3 innate lymphoid cells produce the growth factor HB-EGF to protect the intestine from TNF-mediated inflammation. Nature Immunology, 2022, 23, 251-261.	14.5	28
46	Regulation of intestinal health and disease by innate lymphoid cells. International Immunology, 2014, 26, 501-507.	4.0	26
47	Group 3 innate lymphoid cells: regulating host–commensal bacteria interactions in inflammation and cancer. International Immunology, 2015, 28, dxv056.	4.0	21
48	Mice with epidermal filaggrin deficiency show increased immune reactivity to nickel. Contact Dermatitis, 2019, 80, 139-148.	1.4	20
49	Emerging roles for antigen presentation in establishing host–microbiome symbiosis. Immunological Reviews, 2016, 272, 139-150.	6.0	19
50	Metabolic regulation of innate and adaptive lymphocyte effector responses. Immunological Reviews, 2018, 286, 137-147.	6.0	19
51	Impact of Use of Antibiotics on Response to Immune Checkpoint Inhibitors and Tumor Microenvironment. American Journal of Clinical Oncology: Cancer Clinical Trials, 2021, 44, 247-253.	1.3	19
52	ILC3s control airway inflammation by limiting T cell responses to allergens and microbes. Cell Reports, 2021, 37, 110051.	6.4	16
53	Mislocalization of SLP-76 leads to aberrant inflammatory cytokine and autoantibody production. Blood, 2010, 115, 2186-2195.	1.4	10
54	Impact of antibiotic use on response to treatment with immune checkpoint inhibitors Journal of Clinical Oncology, 2019, 37, 143-143.	1.6	10

#	Article	IF	CITATIONS
55	Manipulation of T _H 17 responses in pulmonary immunity and disease through vaccination. Hum Vaccin, 2009, 5, 510-519.	2.4	6
56	Transcriptionally defining ILC heterogeneity in humans. Nature Immunology, 2016, 17, 351-352.	14.5	6
57	Novel connections and precision approaches. Nature Reviews Immunology, 2019, 19, 75-76.	22.7	6
58	In Situ Support of ILC Precursors. Immunity, 2020, 52, 207-209.	14.3	3
59	Coordination of Mucosal Immunity by Innate Lymphoid Cells. Advances in Experimental Medicine and Biology, 2022, 1365, 113-134.	1.6	2
60	Editorial: New tricks for innate lymphoid cells. Journal of Leukocyte Biology, 2013, 94, 862-864.	3.3	1
61	ILC3 pyroptosis limits Salmonella infection. Nature Microbiology, 2022, 7, 933-934.	13.3	1