Liwen Sang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7634240/publications.pdf

Version: 2024-02-01

119	3,068	27 h-index	52
papers	citations		g-index
120	120	120	4059
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highâ€pressure MOCVD growth of InGaN thick films toward the photovoltaic applications. Fundamental Research, 2023, 3, 403-408.	3.3	3
2	Elastic strain engineered nanomechanical GaN resonators with thermoelastic dissipation dilution up to 600 K. Journal of Applied Physics, 2022, 131, .	2.5	1
3	Stress effect on the resonance properties of single-crystal diamond cantilever resonators for microscopy applications. Ultramicroscopy, 2022, 234, 113464.	1.9	5
4	Thermal conductivity and phonon scattering of AlGaN nanofilms by elastic theory and Boltzmann transport equation. Semiconductor Science and Technology, 2022, 37, 055003.	2.0	2
5	High reactivity of H ₂ O vapor on GaN surfaces. Science and Technology of Advanced Materials, 2022, 23, 189-198.	6.1	4
6	Radiation effect of X-ray with 1 kGy dose on the electrical properties of MESFET based on hydrogen-terminated diamond surface conductivity. Functional Diamond, 2022, 2, 40-45.	3.8	1
7	Polarity Control of an All-Sputtered Epitaxial GaN/AlN/Al Film on a Si(111) Substrate by Intermediate Oxidization. ACS Omega, 2022, 7, 19380-19387.	3.5	1
8	Tailoring the magnetic properties of galfenol film grown on single-crystal diamond. Journal of Alloys and Compounds, 2021, 858, 157683.	5.5	9
9	Insight into traps at Al2O3/p-GaN metal-oxide-semiconductor interface fabricated on free-standing GaN substrate. Journal of Alloys and Compounds, 2021, 853, 157356.	5.5	9
10	Interface characteristics of \hat{l}^2 -Ga2O3/Al2O3/Pt capacitors after postmetallization annealing. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	2.1	7
11	Thermal mismatch induced stress characterization by dynamic resonance based on diamond MEMS. Applied Physics Express, 2021, 14, 045501.	2.4	3
12	Effects of low temperature buffer layer on all-sputtered epitaxial GaN/AlN film on Si (111) substrate. Japanese Journal of Applied Physics, 2021, 60, SCCG03.	1.5	4
13	High-mobility nâ^'-GaN drift layer grown on Si substrates. Applied Physics Letters, 2021, 118, .	3.3	5
14	Temperature dependence of Young's modulus of single-crystal diamond determined by dynamic resonance. Diamond and Related Materials, 2021, 116, 108403.	3.9	17
15	Integrated TbDyFe Film on a Singleâ€Crystal Diamond Microelectromechanical Resonator for Magnetic Sensing. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100352.	2.4	2
16	Highly efficient diamond electromechanical transducer based on released metal–oxide–semiconductor structure. Applied Physics Letters, 2021, 119, .	3.3	3
17	Diamond as the heat spreader for the thermal dissipation of GaN-based electronic devices. Functional Diamond, 2021, 1, 174-188.	3.8	43
18	Polarization-induced hole doping for long-wavelength In-rich InGaN solar cells. Applied Physics Letters, 2021, 119, .	3.3	6

#	Article	IF	Citations
19	Enhanced magnetic sensing performance of diamond MEMS magnetic sensor with boron-doped FeGa film. Carbon, 2020, 170, 294-301.	10.3	18
20	Effect of Deep-Defects Excitation on Mechanical Energy Dissipation of Single-Crystal Diamond. Physical Review Letters, 2020, 125, 206802.	7.8	14
21	Strain-enhanced high <i>Q</i> -factor GaN micro-electromechanical resonator. Science and Technology of Advanced Materials, 2020, 21, 515-523.	6.1	11
22	Layered boron nitride enabling high-performance AlGaN/GaN high electron mobility transistor. Journal of Alloys and Compounds, 2020, 829, 154542.	5.5	19
23	Electrical readout/characterization of single crystal diamond (SCD) cantilever resonators. Diamond and Related Materials, 2020, 103, 107711.	3.9	2
24	Enhancing Delta <i>E</i> Effect at High Temperatures of Galfenol/Ti/Single-Crystal Diamond Resonators for Magnetic Sensing. ACS Applied Materials & Interfaces, 2020, 12, 23155-23164.	8.0	24
25	Coupling of magneto-strictive FeGa film with single-crystal diamond MEMS resonator for high-reliability magnetic sensing at high temperatures. Materials Research Letters, 2020, 8, 180-186.	8.7	19
26	Precise characterization of atomic-scale corrosion of single crystal diamond in H2 plasma based on MEMS/NEMS. Corrosion Science, 2020, 170, 108651.	6.6	6
27	Self-Temperature-Compensated GaN MEMS Resonators through Strain Engineering up to 600 K., 2020, , .		2
28	Generating robust two-dimensional hole gas at the interface between boron nitride and diamond. Japanese Journal of Applied Physics, 2020, 59, 090910.	1.5	3
29	Vertical-Type Ni/GaN UV Photodetectors Fabricated on Free-Standing GaN Substrates. Applied Sciences (Switzerland), 2019, 9, 2895.	2.5	18
30	Boosting the doping efficiency of Mg in $\mbox{\sc i>p-GaN}$ grown on the free-standing GaN substrates. Applied Physics Letters, 2019, 115, .	3.3	22
31	Influence of post-deposition annealing on interface characteristics at Al ₂ O ₃ /n-GaN., 2019,,.		3
32	Terahertz Cyclotron Resonance in AlGaN/GaN Heterostructures. Journal of the Korean Physical Society, 2019, 74, 159-163.	0.7	1
33	Single-crystal diamond microelectromechanical resonator integrated with a magneto-strictive galfenol film for magnetic sensing. Carbon, 2019, 152, 788-795.	10.3	26
34	Al-rich AlGaN semiconductor materials and their device applications. , 2019, , 1-110.		1
35	MOCVD Growth and Investigation of InGaN/GaN Heterostructure Grown on AlGaN/GaN-on-Si Template. Applied Sciences (Switzerland), 2019, 9, 1746.	2.5	4
36	Energyâ€Efficient Metal–Insulator–Metalâ€Semiconductor Fieldâ€Effect Transistors Based on 2D Carrier Gases. Advanced Electronic Materials, 2019, 5, 1800832.	5.1	39

#	Article	IF	Citations
37	Single Crystal Diamond Micromechanical and Nanomechanical Resonators. Topics in Applied Physics, 2019, , 91-121.	0.8	2
38	Threshold Voltage Instability of Diamond Metal–Oxide–Semiconductor Fieldâ€Effect Transistors Based on 2D Hole Gas. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900538.	1.8	2
39	High-quality SiN _{<i>x</i>} / <i>p</i> -GaN metal-insulator-semiconductor interface with low-density trap states. Journal Physics D: Applied Physics, 2019, 52, 085105.	2.8	9
40	Characteristics of Al ₂ O ₃ /native oxide/n-GaN capacitors by post-metallization annealing. Semiconductor Science and Technology, 2019, 34, 034001.	2.0	17
41	Ultrahigh Performance Onâ€Chip Single Crystal Diamond NEMS/MEMS with Electrically Tailored Selfâ€Sensing Enhancing Actuation. Advanced Materials Technologies, 2019, 4, 1800325.	5.8	25
42	High-performance visible to near-infrared photodetectors by using (Cd,Zn)Te single crystal. Optics Express, 2019, 27, 8935.	3.4	14
43	Valence band edge tail states and band gap defect levels of GaN bulk and In <i>_x</i> Ga _{1â^²} <i>_x</i> Photoemission and photothermal deflection spectroscopy. Applied Physics Express, 2018, 11, 021002.	2.4	17
44	A density functional study of the effect of hydrogen on electronic properties and band discontinuity at anatase TiO2/diamond interface. Journal of Applied Physics, 2018, 123, .	2.5	8
45	Suppression in the electrical hysteresis by using CaF2 dielectric layer for p-GaN MIS capacitors. Journal of Applied Physics, 2018, 123, .	2.5	17
46	Determination of the transition point from electron accumulation to depletion at the surface of In <i></i> Ga _{1â~} <i></i> N films. Applied Physics Express, 2018, 11, 021001.	2.4	3
47	Interface trap characterization of Al2O3/GaN vertical-type MOS capacitors on GaN substrate with surface treatments. Journal of Alloys and Compounds, 2018, 767, 600-605.	5.5	26
48	Reducing intrinsic energy dissipation in diamond-on-diamond mechanical resonators toward one million quality factor. Physical Review Materials, $2018, 2, .$	2.4	17
49	Fabrication of three-dimensional CulnS 2 solar-cell structure via supercritical fluid processing. Journal of Supercritical Fluids, 2017, 120, 448-452.	3.2	5
50	Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance. Applied Physics Express, 2017, 10, 051001.	2.4	36
51	Deep-level defects related to the emissive pits in thick InGaN films on GaN template and bulk substrates. APL Materials, 2017, 5, .	5.1	14
52	Reducing energy dissipation and surface effect of diamond nanoelectromechanical resonators by annealing in oxygen ambient. Carbon, 2017, 124, 281-287.	10.3	11
53	Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes. Applied Physics Letters, 2017, 111, .	3.3	55
54	Fabrication of Cu2ZnSnS4 thin films using a Cu-Zn-Sn-O amorphous precursor and supercritical fluid sulfurization. Thin Solid Films, 2017, 638, 244-250.	1.8	1

#	Article	IF	Citations
55	Enhanced UV-visible light photodetectors with a TiO ₂ /Si heterojunction using band engineering. Journal of Materials Chemistry C, 2017, 5, 12848-12856.	5.5	61
56	Improvement of the quality factor of single crystal diamond mechanical resonators. Japanese Journal of Applied Physics, 2017, 56, 024101.	1.5	26
57	Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 088102.	0.5	3
58	An Interface Engineered Multicolor Photodetector Based on nâ€Si(111)/TiO ₂ Nanorod Array Heterojunction. Advanced Functional Materials, 2016, 26, 1400-1410.	14.9	64
59	Investigation on the interfacial chemical state and band alignment for the sputtering-deposited $CaF2/p-GaN heterojunction by angle-resolved X-ray photoelectron spectroscopy. Journal of Applied Physics, 2016, 120, .$	2.5	7
60	Assembly of a high-dielectric constant thin ${\rm TiOx}$ layer directly on H-terminated semiconductor diamond. Applied Physics Letters, 2016, 108, .	3.3	26
61	Superior electrocatalytic activity of mesoporous Au film templated from diblock copolymer micelles. Nano Research, 2016, 9, 1752-1762.	10.4	46
62	Electrochemically Organized Isolated Fullerene-Rich Thin Films with Optical Limiting Properties. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24295-24299.	8.0	27
63	Electrical hysteresis in p-GaN metal–oxide–semiconductor capacitor with atomic-layer-deposited Al ₂ O ₃ as gate dielectric. Applied Physics Express, 2016, 9, 121002.	2.4	19
64	P-Channel InGaN/GaN heterostructure metal-oxide-semiconductor field effect transistor based on polarization-induced two-dimensional hole gas. Scientific Reports, 2016, 6, 23683.	3.3	37
65	Influence of dislocations on indium diffusion in semi-polar InGaN/GaN heterostructures. AIP Advances, 2015, 5, .	1.3	4
66	Mid-infrared Photoconductive Response in AlGaN/GaN Step Quantum Wells. Scientific Reports, 2015, 5, 14386.	3.3	10
67	Optical properties of Ga _{0.82} ln _{0.18} N <i>p</i>	0.2	0
68	Improvement of strained InGaN solar cell performance with a heavily doped n $<$ sup $>+sup>â\inGaN substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1033-1038.$	1.8	9
69	InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties. Journal of Applied Physics, 2015, 117, .	2.5	26
70	Impedance analysis of Al2O3/H-terminated diamond metal-oxide-semiconductor structures. Applied Physics Letters, 2015, 106, 083506.	3.3	16
71	Oneâ€Step Selfâ€Assembly Fabrication of High Quality Ni <i>_x</i> Mg _{1<i>â€x</i>} O Bowlâ€Shaped Array Film and Its Enhanced Photocurrent by Mg, ²⁺ Doping. Advanced Functional Materials, 2015, 25, 3256-3263.	14.9	13
72	Energy dissipation in micron- and submicron-thick single crystal diamond mechanical resonators. Applied Physics Letters, 2014, 105, .	3.3	26

#	Article	IF	Citations
73	A Multilevel Intermediateâ€Band Solar Cell by InGaN/GaN Quantum Dots with a Strainâ€Modulated Structure. Advanced Materials, 2014, 26, 1414-1420.	21.0	40
74	High Detectivity Solarâ€Blind Highâ€Temperature Deepâ€Ultraviolet Photodetector Based on Multiâ€Layered (<i>l</i>)00) Facetâ€Oriented <i>l²</i>)â€Ga ₂ O ₃ Nanobelts. Small, 2014, 10, 1848-185	56. ^{10.0}	185
75	Electrical Characterization of Thick InGaN Films for Photovoltaic Applications. Materials Research Society Symposia Proceedings, 2014, 1635, 29-34.	0.1	0
76	New UVâ€A Photodetector Based on Individual Potassium Niobate Nanowires with High Performance. Advanced Optical Materials, 2014, 2, 771-778.	7.3	97
77	Fabrication of transparent conducting polymer/GaN Schottky junction for deep level defect evaluation under light irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 470-473.	1.8	8
78	Effect of polarization on intersubband transition in AlGaN/GaN multiple quantum wells. Applied Physics Letters, 2013, 102, .	3.3	13
79	Vacancy-type defects in $\ln\langle i\rangle \times \langle i\rangle $ Ga1â^' $\langle i\rangle \times \langle i\rangle $ N grown on GaN templates probed using monoenergetic positron beams. Journal of Applied Physics, 2013, 114, .	2.5	15
80	Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures. Scientific Reports, 2013, 3, 2368.	3.3	41
81	In situ switching layer-by-layer assembly: one-pot rapid layer assembly via alternation of reductive and oxidative electropolymerization. Chemical Communications, 2013, 49, 6879.	4.1	35
82	High-detectivity nanowire photodetectors governed by bulk photocurrent dynamics with thermally stable carbide contacts. Nanotechnology, 2013, 24, 495701.	2.6	18
83	A Comprehensive Review of Semiconductor Ultraviolet Photodetectors: From Thin Film to One-Dimensional Nanostructures. Sensors, 2013, 13, 10482-10518.	3.8	675
84	Determination of the surface band bending in In _{<i>x</i>} Ga _{1â°'<i>x</i>} N films by hard x-ray photoemission spectroscopy. Science and Technology of Advanced Materials, 2013, 14, 015007.	6.1	11
85	Point defects introduced by InN alloying into InxGa1â°'xN probed using a monoenergetic positron beam. Journal of Applied Physics, 2013, 113, 123502.	2.5	7
86	Temperature and Light Intensity Dependence of Photocurrent Transport Mechanisms in InGaN p–i–n Homojunction Solar Cells. Japanese Journal of Applied Physics, 2013, 52, 08JF04.	1.5	8
87	Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices. Applied Physics Letters, 2012, 101, .	3.3	41
88	Vacancy-type defects in In <i>>x</i> Gal– <i>>x</i> N alloys probed using a monoenergetic positron beam. Journal of Applied Physics, 2012, 112, .	2.5	20
89	Comprehensive Investigation of Single Crystal Diamond Deep-Ultraviolet Detectors. Japanese Journal of Applied Physics, 2012, 51, 090115.	1.5	43
90	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	1.5	6

#	Article	IF	Citations
91	InGaN photodiodes using CaF2 insulator for high-temperature UV detection. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 953-956.	0.8	2
92	Comprehensive Investigation of Single Crystal Diamond Deep-Ultraviolet Detectors. Japanese Journal of Applied Physics, 2012, 51, 090115.	1.5	60
93	Study of Defect Levels in the Band Gap for a Thick InGaN Film. Japanese Journal of Applied Physics, 2012, 51, 121001.	1.5	12
94	Enhanced performance of InGaN solar cell by using a super-thin AlN interlayer. Applied Physics Letters, 2011, 99, .	3.3	62
95	High-temperature ultraviolet detection based on InGaN Schottky photodiodes. Applied Physics Letters, 2011, 99, .	3.3	61
96	Electrochemical-Coupling Layer-by-Layer (ECC–LbL) Assembly. Journal of the American Chemical Society, 2011, 133, 7348-7351.	13.7	144
97	Study of the stacking faults in a-plane GaN on r-plane sapphire grown by metal–organic chemical vapor deposition. Journal of Crystal Growth, 2011, 318, 423-426.	1.5	2
98	Temperature-controlled epitaxy of InxGa1-xN alloys and their band gap bowing. Journal of Applied Physics, 2011, 110, 113514.	2.5	32
99	Nonpolar <i>>a</i> -plane light-emitting diode with an <i>in-situ</i> SiN _{<i>x</i>} interlayer on <i>r</i> -plane sapphire grown by metal-organic chemical vapour deposition. Chinese Physics B, 2011, 20, 017804.	1.4	1
100	High-performance metal-semiconductor-metal InGaN photodetectors using CaF2 as the insulator. Applied Physics Letters, 2011, 98, 103502.	3.3	56
101	Fabrication of dodecagonal pyramid on nitrogen face GaN and its effect on the light extraction. Science China Technological Sciences, 2010, 53, 769-771.	4.0	6
102	Single ZnO Nanowire/pâ€type GaN Heterojunctions for Photovoltaic Devices and UV Lightâ€Emitting Diodes. Advanced Materials, 2010, 22, 4284-4287.	21.0	73
103	Invariable optical properties of phosphor-free white light-emitting diode under electrical stress. Chinese Physics B, 2010, 19, 107307.	1.4	3
104	Phase Separation Resulting from Mg Doping in p-InGaN Film Grown on GaN/Sapphire Template. Applied Physics Express, 2010, 3, 111004.	2.4	29
105	Effect of Indium Ambient on Electrical Properties of Mg-Doped Al _{<i>x</i>} Ga _{1â^' <i>x</i>} N. Chinese Physics Letters, 2010, 27, 127304.	3.3	2
106	Study on the formation of dodecagonal pyramid on nitrogen polar GaN surface etched by hot H3PO4. Applied Physics Letters, 2009, 95, 071114.	3.3	41
107	Transmission electron microscopy investigation of inversion domain boundary in Al0.65Ga0.35N grown on AlN/sapphire template. Applied Physics Letters, 2009, 95, .	3.3	4
108	Study of the leakage current mechanism in Schottky contacts to Al _{0.25} Ga _{0.75} N/GaN heterostructures with AlN interlayers. Semiconductor Science and Technology, 2009, 24, 055005.	2.0	12

#	ARTICLE	IF	CITATIONS
109	AlGaN-Based Deep-Ultraviolet Light Emitting Diodes Fabricated on AlN/sapphire Template. Chinese Physics Letters, 2009, 26, 117801.	3.3	6
110	Improvement of crystal quality of GaN grown on AlN template by MOCVD using HTâ€AlN interlayer. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S317.	0.8	1
111	Reduction in threading dislocation densities in AlN epilayer by introducing a pulsed atomic-layer epitaxial buffer layer. Applied Physics Letters, 2008, 93, 122104.	3.3	42
112	Luminescent properties in the strain adjusted phosphor-free GaN based white light-emitting diode. Applied Physics Letters, 2008, 93, .	3.3	12
113	AlGaN-Based Solar-Blind Schottky Photodetectors Fabricated on AlN/Sapphire Template. Chinese Physics Letters, 2008, 25, 258-261.	3.3	10
114	Temperature dependence on current-voltage characteristics of Niâ^•Au–Al0.45Ga0.55N Schottky photodiode. Applied Physics Letters, 2008, 92, 103505.	3.3	9
115	Analysis of mass transport mechanism in InGaN epitaxy on ridge shaped selective area growth GaN by metal organic chemical vapor deposition. Journal of Applied Physics, 2008, 103, .	2.5	34
116	Study on threading dislocations blocking mechanism of GaNâ^•AlxGa1â^'xN superlattices. Applied Physics Letters, 2008, 92, 192112.	3.3	17
117	Barrier Enhancement Effect of Postannealing in Oxygen Ambient on Ni/AlGaN Schottky Contacts. Chinese Physics Letters, 2007, 24, 2938-2941.	3.3	6
118	Capacitance characteristics of back-illuminated Al0.42Ga0.58Nâ^•Al0.40Ga0.60N heterojunction p-i-n solar-blind UV photodiode. Applied Physics Letters, 2007, 91, 253510.	3.3	8
119	FINITE ELEMENT ANALYSIS OF UNDERWATER CYMBAL TRANSDUCERS WITH LARGE DISPLACEMENT AND FAST RESPONSE TIME. Integrated Ferroelectrics, 2006, 78, 103-111.	0.7	2