
Manish Roorkiwal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chromosome-length genome assemblies of six legume species provide insights into genome organization, evolution, and agronomic traits for crop improvement. Journal of Advanced Research, 2022, 42, 315-329.	9.5	20
2	Agronomic Performance of Chickpea Affected by Drought Stress at Different Growth Stages. Agronomy, 2022, 12, 995.	3.0	12
3	Genetic variation in <i>CaTIFY4b</i> contributes to drought adaptation in chickpea. Plant Biotechnology Journal, 2022, 20, 1701-1715.	8.3	23
4	The Key to the Future Lies in the Past: Insights from Grain Legume Domestication and Improvement Should Inform Future Breeding Strategies. Plant and Cell Physiology, 2022, 63, 1554-1572.	3.1	13
5	Development of a dense genetic map and QTL analysis for pod borer Helicoverpa armigera (Hübner) resistance component traits in chickpea (Cicer arietinum L .). Plant Genome, 2021, 14, e20071.	2.8	16
6	Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Scientific Data, 2021, 8, 50.	5.3	38
7	Construction of a high-density genetic map and QTL analysis for yield, yield components and agronomic traits in chickpea (Cicer arietinum L.). PLoS ONE, 2021, 16, e0251669.	2.5	18
8	Novel Genes and Genetic Loci Associated With Root Morphological Traits, Phosphorus-Acquisition Efficiency and Phosphorus-Use Efficiency in Chickpea. Frontiers in Plant Science, 2021, 12, 636973.	3.6	15
9	Molecular Mechanisms and Biochemical Pathways for Micronutrient Acquisition and Storage in Legumes to Support Biofortification for Nutritional Security. Frontiers in Plant Science, 2021, 12, 682842.	3.6	19
10	Genome-wide transcriptome analysis and physiological variation modulates gene regulatory networks acclimating salinity tolerance in chickpea. Environmental and Experimental Botany, 2021, 187, 104478.	4.2	17
11	Rapid delivery systems for future food security. Nature Biotechnology, 2021, 39, 1179-1181.	17.5	17
12	Fast-forward breeding for a food-secure world. Trends in Genetics, 2021, 37, 1124-1136.	6.7	82
13	Breeding customâ€designed crops for improved drought adaptation. Genetics & Genomics Next, 2021, 2, e202100017.	1.5	48
14	Introgression of " <i>QTLâ€hotspot</i> ―region enhances drought tolerance and grain yield in three elite chickpea cultivars. Plant Genome, 2021, 14, e20076.	2.8	73
15	The genetics of vigour-related traits in chickpea (Cicer arietinum L.): insights from genomic data. Theoretical and Applied Genetics, 2021, 135, 107.	3.6	4
16	Translational Chickpea Genomics Consortium to Accelerate Genetic Gains in Chickpea (Cicer arietinum) Tj ETQq0	0.0 rgBT	Oyerlock 10
17	Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (IncRNAs) in chickpea (Cicer arietinum L.). Physiology and Molecular Biology of Plants, 2021, 27, 2605-2619.	3.1	12

A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature, 2021, 599, 622-627. 27.8 106

2

MANISH ROORKIWAL

#	Article	IF	CITATIONS
19	Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. Biology, 2021, 10, 1255.	2.8	10
20	Screening and Validation of Drought Tolerance and Fusarium Wilt Resistance in Advance Breeding Lines of Chickpea (Cicer arietinum L.). Legume Research, 2021, , .	0.1	0
21	Super-Pangenome by Integrating the Wild Side of a Species for Accelerated Crop Improvement. Trends in Plant Science, 2020, 25, 148-158.	8.8	177
22	Characterization of ASR gene and its role in drought tolerance in chickpea (Cicer arietinum L.). PLoS ONE, 2020, 15, e0234550.	2.5	18
23	Genetic Dissection and Identification of Candidate Genes for Salinity Tolerance Using Axiom®CicerSNP Array in Chickpea. International Journal of Molecular Sciences, 2020, 21, 5058.	4.1	38
24	Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. Heredity, 2020, 125, 396-416.	2.6	124
25	Integrating genomics for chickpea improvement: achievements and opportunities. Theoretical and Applied Genetics, 2020, 133, 1703-1720.	3.6	82
26	Strategies for Effective Use of Genomic Information in Crop Breeding Programs Serving Africa and South Asia. Frontiers in Plant Science, 2020, 11, 353.	3.6	33
27	QTLian breeding for climate resilience in cereals: progress and prospects. Functional and Integrative Genomics, 2019, 19, 685-701.	3.5	34
28	Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. Nature Genetics, 2019, 51, 857-864.	21.4	219
29	InDel markers: An extended marker resource for molecular breeding in chickpea. PLoS ONE, 2019, 14, e0213999.	2.5	43
30	Mapping Quantitative Trait Loci for Carotenoid Concentration in Three F ₂ Populations of Chickpea. Plant Genome, 2019, 12, 1-12.	2.8	13
31	Super Annigeri 1 and improved JG 74: two Fusarium wilt-resistant introgression lines developed using marker-assisted backcrossing approach in chickpea (Cicer arietinum L.). Molecular Breeding, 2019, 39, 2.	2.1	62
32	Genetic imprints of domestication for disease resistance, oil quality, and yield component traits in groundnut (Arachis hypogaea L.). Molecular Genetics and Genomics, 2019, 294, 365-378.	2.1	12
33	Genetic diversity of root system architecture in response to drought stress in grain legumes. Journal of Experimental Botany, 2018, 69, 3267-3277.	4.8	124
34	Molecular and phenotypic diversity among chickpea (Cicer arietinum) genotypes as a function of drought tolerance. Crop and Pasture Science, 2018, 69, 142.	1.5	14
35	Development and evaluation of highâ€density Axiom [®] <i>Cicer<scp>SNP</scp></i> ÂArray for highâ€resolution genetic mapping and breeding applications in chickpea. Plant Biotechnology Journal, 2018, 16, 890-901.	8.3	76
36	Chickpea Genomics. , 2018, , 289-316.		1

#	Article	IF	CITATIONS
37	Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Scientific Reports, 2018, 8, 11701.	3.3	61
38	Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science, 2017, 22, 961-975.	8.8	1,004
39	Genomic Selection for Crop Improvement: An Introduction. , 2017, , 1-6.		8
40	Current Status and Prospects of Genomic Selection in Legumes. , 2017, , 131-147.		7
41	Advances in Chickpea Genomic Resources for Accelerating the Crop Improvement. Compendium of Plant Genomes, 2017, , 53-67.	0.5	3
42	Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. Frontiers in Plant Science, 2016, 7, 455.	3.6	180
43	Genome-Enabled Prediction Models for Yield Related Traits in Chickpea. Frontiers in Plant Science, 2016, 7, 1666.	3.6	127
44	QTLâ€seq for rapid identification of candidate genes for 100â€seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology Journal, 2016, 14, 2110-2119.	8.3	177
45	Recent breeding programs enhanced genetic diversity in both desi and kabuli varieties of chickpea (Cicer arietinum L.). Scientific Reports, 2016, 6, 38636.	3.3	77
46	Whole genome re-sequencing reveals genome-wide variations among parental lines of 16 mapping populations in chickpea (Cicer arietinum L.). BMC Plant Biology, 2016, 16, 10.	3.6	101
47	Prioritization of candidate genes in "QTL-hotspot―region for drought tolerance in chickpea (Cicer) Tj ETQq1	1.0,7843	14 rgBT /Ove
48	Legume Crops Phylogeny and Genetic Diversity for Science and Breeding. Critical Reviews in Plant Sciences, 2015, 34, 43-104.	5.7	248
49	Genotyping-by-sequencing based intra-specific genetic map refines a â€~â€~QTL-hotspot―region for drought tolerance in chickpea. Molecular Genetics and Genomics, 2015, 290, 559-571.	2.1	180
50	Allele diversity for abiotic stress responsive candidate genes in chickpea reference set using gene based SNP markers. Frontiers in Plant Science, 2014, 5, 248.	3.6	46
51	Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches. PLoS ONE, 2014, 9, e96758.	2.5	187
52	Exploring Germplasm Diversity to Understand the Domestication Process in Cicer spp. Using SNP and DArT Markers. PLoS ONE, 2014, 9, e102016.	2.5	42
53	Chickpea. , 2013, , 81-111.		16
54	Single Nucleotide Polymorphism–based Genetic Diversity in the Reference Set of Peanut (<i>Arachis</i> spp.) by Developing and Applying Costâ€Effective Kompetitive Allele Specific Polymerase Chain Reaction Genotyping Assays. Plant Genome, 2013, 6, plantgenome2013.06.0019.	2.8	65

MANISH ROORKIWAL

#	Article	IF	CITATIONS
55	Single Nucleotide Polymorphism Genotyping for Breeding and Genetics Applications in Chickpea and Pigeonpea using the BeadXpress Platform. Plant Genome, 2013, 6, plantgenome2013.05.0017.	2.8	55
56	Legume Genomics: From Genomic Resources to Molecular Breeding. Plant Genome, 2013, 6, plantgenome2013.12.0002in.	2.8	12
57	Purifying Selection Bias against Microsatellites in Gene Rich Segmental Duplications in the Rice Genome. International Journal of Evolutionary Biology, 2012, 2012, 1-8.	1.0	1
58	Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies. Journal of Biosciences, 2012, 37, 811-820.	1.1	68
59	A classification scoring schema to validate protein interactors. Bioinformation, 2012, 8, 92-97.	0.5	13
60	Mining functional microsatellites in legume unigenes. Bioinformation, 2011, 7, 264-270.	0.5	9
61	Genome-wide analysis of conservation and divergence of microsatellites in rice. Molecular Genetics and Genomics, 2009, 282, 205-215.	2.1	12
62	Breeding customâ€designed crops for improved drought adaptation. Genetics & Genomics Next, 0, , .	1.5	0