Arian Laurence

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7632708/publications.pdf

Version: 2024-02-01

136 papers

23,118 citations

67 h-index 125 g-index

142 all docs

142 docs citations

times ranked

142

27634 citing authors

#	Article	IF	CITATIONS
1	Autocrine vitamin D signaling switches off pro-inflammatory programs of TH1 cells. Nature Immunology, 2022, 23, 62-74.	7.0	105
2	Deathâ€associated protein kinase 1 (DAPK1) controls CD8 ⁺ T cell activation, trafficking, and antitumor activity. FASEB Journal, 2021, 35, e21138.	0.2	9
3	DAPK1 (death associated protein kinase 1) mediates mTORC1 activation and antiviral activities in CD8+ T cells. Cellular and Molecular Immunology, 2021, 18, 138-149.	4.8	13
4	ATP6V0d2 Suppresses Alveoli Macrophage Alternative Polarization and Allergic Asthma via Degradation of PU.1. Allergy, Asthma and Immunology Research, 2021, 13, 479.	1.1	1
5	SARS-CoV-2 drives JAK1/2-dependent local complement hyperactivation. Science Immunology, 2021, 6, .	5.6	144
6	Functional and structural analysis of cytokine-selective IL6ST defects that cause recessive hyper-IgE syndrome. Journal of Allergy and Clinical Immunology, 2021, 148, 585-598.	1.5	20
7	IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca ²⁺ through the noncanonical STAT3 pathway. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11
8	Inborn errors of IL-6 family cytokine responses. Current Opinion in Immunology, 2021, 72, 135-145.	2.4	25
9	Effector Mechanisms in Autoimmunity. , 2020, , 319-329.		O
10	Dynamics of genomic and immune responses during primary immunotherapy resistance in mismatch repair–deficient tumors. Journal of Physical Education and Sports Management, 2020, 6, a005678.	0.5	3
11	Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity, 2020, 53, 745-758.e4.	6.6	46
12	T Helper Plasticity Is Orchestrated by STAT3, Bcl6, and Blimp-1 Balancing Pathology and Protection in Malaria. IScience, 2020, 23, 101310.	1.9	17
13	Dominant-negative mutations in human <i>IL6ST</i> underlie hyper-lgE syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	64
14	Absence of GP130 cytokine receptor signaling causes extended St $\tilde{A}^{1}\!/4$ ve-Wiedemann syndrome. Journal of Experimental Medicine, 2020, 217, .	4.2	41
15	A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Research, 2020, 8, 24.	5.4	21
16	IL-23 and IL-2 activation of STAT5 is required for optimal IL-22 production in ILC3s during colitis. Science Immunology, 2020, 5, .	5.6	32
17	Protein Kinase Antagonists in Therapy of Immunological and Inflammatory Diseases. , 2019, , 1185-1196.e1.		2
18	TFEB Mediates Immune Evasion and Resistance to mTOR Inhibition of Renal Cell Carcinoma via Induction of PD-L1. Clinical Cancer Research, 2019, 25, 6827-6838.	3.2	47

#	Article	IF	Citations
19	The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a036996.	2.9	24
20	The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by facilitating autophagosome-lysosome fusion. Autophagy, 2019, 15, 960-975.	4.3	101
21	Viral integration drives multifocal HCC during the occult HBV infection. Journal of Experimental and Clinical Cancer Research, 2019, 38, 261.	3.5	27
22	Programmed Cell Death-1 Receptor (PD-1)-Mediated Regulation of Innate Lymphoid Cells. International Journal of Molecular Sciences, 2019, 20, 2836.	1.8	23
23	ATP6V0d2 mediates leucine-induced mTORC1 activation and polarization of macrophages. Protein and Cell, 2019, 10, 615-619.	4.8	8
24	Retinoic Acid Receptor Alpha Represses a Th9 Transcriptional and Epigenomic Program to Reduce Allergic Pathology. Immunity, 2019, 50, 106-120.e10.	6.6	54
25	Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α–mediated tumor progression. Journal of Clinical Investigation, 2019, 129, 631-646.	3.9	138
26	STAT-3–independent production of IL-17 by mouse innate-like αβ T cells controls ocular infection. Journal of Experimental Medicine, 2018, 215, 1079-1090.	4.2	25
27	STAT5B: A Differential Regulator of the Life and Death of CD4+ Effector Memory T Cells. Journal of Immunology, 2018, 200, 110-118.	0.4	29
28	Biallelic interferon regulatory factor 8 mutation: AÂcomplex immunodeficiency syndrome with dendritic cell deficiency, monocytopenia, and immune dysregulation. Journal of Allergy and Clinical Immunology, 2018, 141, 2234-2248.	1.5	63
29	Human retinoic acid–regulated CD161+ regulatory T cells support wound repair in intestinal mucosa. Nature Immunology, 2018, 19, 1403-1414.	7.0	86
30	Effect of Huaier granule on recurrence after curative resection of HCC: a multicentre, randomised clinical trial. Gut, 2018, 67, 2006-2016.	6.1	147
31	PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49, 247-263.e7.	6.6	104
32	Translational and clinical advances in JAK-STAT biology: The present and future of jakinibs. Journal of Leukocyte Biology, 2018, 104, 499-514.	1.5	122
33	TNF overproduction impairs epithelial staphylococcal response in hyper IgE syndrome. Journal of Clinical Investigation, 2018, 128, 3595-3604.	3.9	28
34	Tbet is a critical modulator of FoxP3 expression in autoimmune graft- versus -host disease. Haematologica, 2017, 102, 1446-1456.	1.7	8
35	BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency. Nature Immunology, 2017, 18, 813-823.	7.0	113
36	Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. European Journal of Immunology, 2017, 47, 1096-1107.	1.6	127

#	Article	IF	CITATIONS
37	Mechanisms and consequences of Jak–STAT signaling in the immune system. Nature Immunology, 2017, 18, 374-384.	7.0	870
38	Subset- and tissue-defined STAT5 thresholds control homeostasis and function of innate lymphoid cells. Journal of Experimental Medicine, 2017, 214, 2999-3014.	4.2	85
39	When half a glass of STAT3 is just not enough. Blood, 2016, 128, 3020-3021.	0.6	2
40	An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Research, 2016, 44, 1052-1063.	6.5	44
41	IL-10 induces a STAT3-dependent autoregulatory loop in T $<$ sub $>$ H $<$ /sub $>$ 2 cells that promotes Blimp-1 restriction of cell expansion via antagonism of STAT5 target genes. Science Immunology, 2016, 1, .	5.6	26
42	Loss of $11\hat{1}^2$ HSD1 enhances glycolysis, facilitates intrahepatic metastasis, and indicates poor prognosis in hepatocellular carcinoma. Oncotarget, 2016, 7, 2038-2053.	0.8	13
43	Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions. ELife, 2016, 5, .	2.8	74
44	EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 2015, 5, 10643.	1.6	129
45	Global analysis of DNA methylation in hepatocellular carcinoma by a liquid hybridization capture-based bisulfite sequencing approach. Clinical Epigenetics, 2015, 7, 86.	1.8	48
46	Celastrol, a Chinese herbal compound, controls autoimmune inflammation by altering the balance of pathogenic and regulatory T cells in the target organ. Clinical Immunology, 2015, 157, 228-238.	1.4	106
47	IL-1 watches the watchmen. Nature Immunology, 2015, 16, 226-227.	7.0	6
48	Bone Marrow-Derived Mesenchymal Stromal Cells Harness Purinergenic Signaling to Tolerize Human Th1 Cells In Vivo. Stem Cells, 2015, 33, 1200-1212.	1.4	102
49	The JAK-STAT Pathway: Impact on Human Disease and Therapeutic Intervention. Annual Review of Medicine, 2015, 66, 311-328.	5.0	1,074
50	Asymmetric Action of STAT Transcription Factors Drives Transcriptional Outputs and Cytokine Specificity. Immunity, 2015, 42, 877-889.	6.6	137
51	Viral integration signature in multifocal hepatocellular carcinoma during occult hepatitis B virus infection: a single-cell sequencing analysis. Lancet, The, 2015, 386, S30.	6.3	1
52	Mechanisms of Jak/STAT Signaling in Immunity and Disease. Journal of Immunology, 2015, 194, 21-27.	0.4	440
53	A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood, 2014, 123, 2978-2987.	0.6	71
54	Reduced expression of transcriptional intermediary factor 1 gamma promotes metastasis and indicates poor prognosis of hepatocellular carcinoma. Hepatology, 2014, 60, 1620-1636.	3.6	89

#	Article	IF	CITATIONS
55	Effector Mechanisms in Autoimmunity. , 2014, , 311-318.		1
56	Helper T Cell Plasticity: Impact of Extrinsic and Intrinsic Signals on Transcriptomes and Epigenomes. Current Topics in Microbiology and Immunology, 2014, 381, 279-326.	0.7	57
57	Transcriptional and epigenetic networks of helper T and innate lymphoid cells. Immunological Reviews, 2014, 261, 23-49.	2.8	76
58	A Degrading View of Regulatory TÂCells. Immunity, 2013, 39, 201-203.	6.6	11
59	Back to the future: oral targeted therapy for RA and other autoimmune diseases. Nature Reviews Rheumatology, 2013, 9, 173-182.	3.5	106
60	Helper Tâ \in cell identity and evolution of differential transcriptomes and epigenomes. Immunological Reviews, 2013, 252, 24-40.	2.8	90
61	Mechanisms underlying helper T-cell plasticity: Implications for immune-mediated disease. Journal of Allergy and Clinical Immunology, 2013, 131, 1276-1287.	1.5	138
62	Janus kinase inhibitors in autoimmune diseases. Annals of the Rheumatic Diseases, 2013, 72, ii111-ii115.	0.5	350
63	T cell activation induces proteasomal degradation of Argonaute and rapid remodeling of the microRNA repertoire. Journal of Experimental Medicine, 2013, 210, 417-432.	4.2	180
64	Tissue Inhibitor of Metalloproteinase 1 Is Preferentially Expressed in Th1 and Th17 T-Helper Cell Subsets and Is a Direct Stat Target Gene. PLoS ONE, 2013, 8, e59367.	1.1	15
65	Protein kinase antagonists as therapeutic agents for immunological and inflammatory disorders. , 2013, , 1085-1094.		0
66	Distinct requirements for T-bet in gut innate lymphoid cells. Journal of Experimental Medicine, 2012, 209, 2331-2338.	4.2	160
67	STAT3 Transcription Factor Promotes Instability of nTreg Cells and Limits Generation of iTreg Cells during Acute Murine Graft-versus-Host Disease. Immunity, 2012, 37, 209-222.	6.6	164
68	Interleukin-27 Priming of T Cells Controls IL-17 Production In trans via Induction of the Ligand PD-L1. Immunity, 2012, 36, 1017-1030.	6.6	229
69	Jakinibs: a new class of kinase inhibitors in cancer and autoimmune disease. Current Opinion in Pharmacology, 2012, 12, 464-470.	1.7	193
70	Function of JAKs and STATs in Lymphocytes: Bench to Bedside., 2012,, 205-237.		0
71	Kinase inhibitors in the treatment of immune-mediated disease. F1000 Medicine Reports, 2012, 4, 5.	2.9	53
72	JAK Kinases in Health and Disease: An Update. Open Rheumatology Journal, 2012, 6, 232-244.	0.1	85

#	Article	lF	CITATIONS
73	ILâ€13â€producing Th1 and Th17 cells characterize adaptive responses to both self and foreign antigens. European Journal of Immunology, 2012, 42, 2322-2328.	1.6	39
74	Therapeutic inhibition of the Janus kinases. Inflammation and Regeneration, 2012, 32, 016-022.	1.5	3
75	Signal Transduction and TH17 Cell Differentiation. , 2011, , 157-182.		O
76	Mast Cell Interleukin-2 Production Contributes to Suppression of Chronic Allergic Dermatitis. Immunity, 2011, 35, 562-571.	6.6	98
77	Th17 Cells Are Long Lived and Retain a Stem Cell-like Molecular Signature. Immunity, 2011, 35, 972-985.	6.6	392
78	T helper 17 cell heterogeneity and pathogenicity in autoimmune disease. Trends in Immunology, 2011, 32, 395-401.	2.9	187
79	Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology, 2011, 134, 235-245.	2.0	96
80	Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nature Immunology, 2011, 12, 247-254.	7.0	522
81	Genomic views of STAT function in CD4+ T helper cell differentiation. Nature Reviews Immunology, 2011, 11, 239-250.	10.6	251
82	IL-2 Controls the Stability of Foxp3 Expression in TGF-β–Induced Foxp3+ T Cells In Vivo. Journal of Immunology, 2011, 186, 6329-6337.	0.4	233
83	Antigen-stimulated CD4 T-cell expansion is inversely and log-linearly related to precursor number. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3312-3317.	3.3	35
84	Regulation of MicroRNA Expression and Abundance during Lymphopoiesis. Immunity, 2010, 32, 828-839.	6.6	307
85	Diverse Targets of the Transcription Factor STAT3 Contribute to T Cell Pathogenicity and Homeostasis. Immunity, 2010, 32, 605-615.	6.6	605
86	Generation of pathogenic TH17 cells in the absence of TGF- \hat{I}^2 signalling. Nature, 2010, 467, 967-971.	13.7	1,253
87	STAT1-Activating Cytokines Limit Th17 Responses through Both T-bet–Dependent and –Independent Mechanisms. Journal of Immunology, 2010, 185, 6461-6471.	0.4	103
88	The protective role of Tregs and Mast Cells in Chronic Allergic Dermatitis. Journal of Allergy and Clinical Immunology, 2010, 125, AB180.	1.5	0
89	Signal transduction pathways and transcriptional regulation in Th17 cell differentiation. Cytokine and Growth Factor Reviews, 2010, 21, 425-434.	3.2	195
90	Interleukin 27 and viral hepatitis: Smarter than the average cytokine. Hepatology, 2009, 50, 358-360.	3.6	3

#	Article	IF	Citations
91	The Current STATus of lymphocyte signaling: new roles for old players. Current Opinion in Immunology, 2009, 21, 161-166.	2.4	101
92	The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17–producing effector T helper cells in vivo. Nature Immunology, 2009, 10, 314-324.	7.0	921
93	Selectivity and therapeutic inhibition of kinases: to be or not to be?. Nature Immunology, 2009, 10, 356-360.	7.0	218
94	Janus kinases in immune cell signaling. Immunological Reviews, 2009, 228, 273-287.	2.8	982
95	Signal transduction and Th17 cell differentiation. Microbes and Infection, 2009, 11, 599-611.	1.0	52
96	An Autoinflammatory Disease with Deficiency of the Interleukin-1–Receptor Antagonist. New England Journal of Medicine, 2009, 360, 2426-2437.	13.9	892
97	Therapeutic targeting of Janus kinases. Immunological Reviews, 2008, 223, 132-142.	2.8	212
98	Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature, 2008, 452, 773-776.	13.7	1,046
99	Interleukin-22: a sheep in wolf's clothing. Nature Medicine, 2008, 14, 247-249.	15.2	37
100	OR.3. Absent Th17 Responses in Patients with Hyper-IgE Syndrome and STAT3 Mutation. Clinical Immunology, 2008, 127, S5.	1.4	0
101	New insights into the roles of Stat5a/b and Stat3 in T cell development and differentiation. Seminars in Cell and Developmental Biology, 2008, 19, 394-400.	2.3	109
102	Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood, 2008, 111, 1013-1020.	0.6	392
103	IL-27R deficiency delays the onset of colitis and protects from helminth-induced pathology in a model of chronic IBD. International Immunology, 2008, 20, 739-752.	1.8	47
104	Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques. Mucosal Immunology, 2008, 1, 279-288.	2.7	212
105	Transforming Growth Factor \hat{I}^2 Subverts the Immune System into Directly Promoting Tumor Growth through Interleukin-17. Cancer Research, 2008, 68, 3915-3923.	0.4	233
106	Protein kinase antagonists as therapeutic agents for immunological and inflammatory disorders. , 2008, , 1341-1351.		0
107	Preferential Loss of Th17 Tâ€cells at Mucosal Sites Predicts AIDS Progression in Simian Immunodeficiency Virusâ€Infected Macaques. FASEB Journal, 2008, 22, 852.7.	0.2	4
108	Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. Journal of Experimental Medicine, 2007, 204, 65-71.	4.2	112

#	Article	IF	Citations
109	IL-21 Is Produced by Th17 Cells and Drives IL-17 Production in a STAT3-dependent Manner. Journal of Biological Chemistry, 2007, 282, 34605-34610.	1.6	549
110	Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood, 2007, 109, 4368-4375.	0.6	488
111	Signal transduction pathways and transcriptional regulation in the control of Th17 differentiation. Seminars in Immunology, 2007, 19, 400-408.	2.7	231
112	146 A Central Role for Interleukin 27 and IL-6 Mediated Activation of STAT3 in T Cell Production of IL-10. Cytokine, 2007, 39, 40-41.	1.4	0
113	Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 2007, 26, 371-381.	6.6	1,317
114	Distinct regulation of interleukinâ€17 in human T helper lymphocytes. Arthritis and Rheumatism, 2007, 56, 2936-2946.	6.7	321
115	TH-17 differentiation: of mice and men. Nature Immunology, 2007, 8, 903-905.	7.0	152
116	Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nature Immunology, 2007, 8, 1363-1371.	7.0	733
117	4-pyridone-3-carboxamide ribonucleoside triphosphate accumulating in erythrocytes in end stage renal failure originates from tryptophan metabolism. Clinical and Experimental Medicine, 2007, 7, 135-141.	1.9	15
118	Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. British Journal of Haematology, 2006, 132, 255-267.	1.2	43
119	Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nature Immunology, 2006, 7, 937-945.	7.0	874
120	Helper T cell differentiation enters a new era: Le Roi est mort; vive le Roi!. Journal of Experimental Medicine, 2006, 203, 809-812.	4.2	61
121	Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. Journal of Experimental Medicine, 2006, 203, 2785-2791.	4.2	210
122	Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8137-8142.	3.3	580
123	IL-27 Limits IL-2 Production during Th1 Differentiation. Journal of Immunology, 2006, 176, 237-247.	0.4	196
124	Cerebral and pulmonary nocardia in a bone marrow transplant patient. British Journal of Haematology, 2005, 129, 711-711.	1,2	6
125	Positive and Negative Regulation of the IL-27 Receptor during Lymphoid Cell Activation. Journal of Immunology, 2005, 174, 7684-7691.	0.4	154
126	Identification of pro-interleukin 16 as a novel target of MAP kinases in activated T lymphocytes. European Journal of Immunology, 2004, 34, 587-597.	1.6	19

#	Article	IF	CITATIONS
127	Elevated Erythrocyte CDPâ€Choline Levels Associated with βâ€Thalassaemia in Patients with Transfusion Independent Anaemia. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1265-1267.	0.4	3
128	An Unusual Pyridine Nucleotide Accumulating in Erythrocytes: Its Identity, and Positive Correlation with Degree of Renal Failure. Nucleosides, Nucleotides and Nucleic Acids, 2004, 23, 1135-1139.	0.4	12
129	Biology of recently discovered cytokines: discerning the pro- and anti-inflammatory properties of interleukin-27. Arthritis Research, 2004, 6, 225.	2.0	52
130	Origin and characteristics of an unusual pyridine nucleotide accumulating in erythrocytes: positive correlation with degree of renal failure. Clinica Chimica Acta, 2003, 335, 117-129.	0.5	29
131	Approaches to Define Antigen Receptor-induced Serine Kinase Signal Transduction Pathways. Journal of Biological Chemistry, 2003, 278, 9267-9275.	1.6	38
132	The T cell antigen receptor activates phosphatidylinositol 3-kinase-regulated serine kinases protein kinase B and ribosomal S6 kinase 1. FEBS Letters, 2000, 486, 38-42.	1.3	35
133	Biochemical Basis for the Impaired Immune Response in Chronic Renal Failure?. Advances in Experimental Medicine and Biology, 1998, 431, 559-563.	0.8	6
134	Evaluation Of Adenine Concentration in Plasma of Patients with Renal Failure Using Improved Ultrafiltration Technique. Advances in Experimental Medicine and Biology, 1998, 431, 785-787.	0.8	2
135	Erythrocyte Cdp-Choline Accumulation in Haemolytic Anaemia and Renal Failure (Rf). Advances in Experimental Medicine and Biology, 1998, 431, 155-159.	0.8	4
136	Disorders of Granulopoiesis and Granulocyte Function. , 0, , 303-339.		1