Ana Paula Barbosa-Povoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763251/publications.pdf

Version: 2024-02-01

304 papers 8,082 citations

44069 48 h-index 80 g-index

313 all docs

313 docs citations

313 times ranked

5106 citing authors

#	Article	IF	CITATIONS
1	An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. European Journal of Operational Research, 2007, 179, 1063-1077.	5.7	437
2	Towards supply chain sustainability: economic, environmental and social design and planning. Journal of Cleaner Production, 2015, 105, 14-27.	9.3	313
3	Opportunities and challenges in sustainable supply chain: An operations research perspective. European Journal of Operational Research, 2018, 268, 399-431.	5.7	262
4	Supply Chain Resilience: Definitions and quantitative modelling approaches – A literature review. Computers and Industrial Engineering, 2018, 115, 109-122.	6.3	231
5	Design and planning of supply chains with integration of reverse logistics activities under demand uncertainty. European Journal of Operational Research, 2013, 226, 436-451.	5.7	212
6	Simple Continuous-Time Formulation for Short-Term Scheduling of Batch and Continuous Processes. Industrial & Description of Engineering Chemistry Research, 2004, 43, 105-118.	3.7	168
7	Simultaneous design and planning of supply chains with reverse flows: A generic modelling framework. European Journal of Operational Research, 2010, 203, 336-349.	5.7	167
8	Research challenges in municipal solid waste logistics management. Waste Management, 2016, 48, 584-592.	7.4	167
9	Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns. Omega, 2014, 48, 60-74.	5.9	162
10	Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega, 2015, 56, 53-73.	5.9	156
11	Multi-period design and planning of closed-loop supply chains with uncertain supply and demand. Computers and Chemical Engineering, 2014, 66, 151-164.	3.8	152
12	Quantitative indicators for social sustainability assessment of supply chains. Journal of Cleaner Production, 2018, 180, 748-768.	9.3	138
13	An Improved RTN Continuous-Time Formulation for the Short-term Scheduling of Multipurpose Batch Plants. Industrial & Engineering Chemistry Research, 2001, 40, 2059-2068.	3.7	136
14	Process systems engineering – The generation next?. Computers and Chemical Engineering, 2021, 147, 107252.	3.8	128
15	Sustainable supply chains: An integrated modeling approach under uncertainty. Omega, 2018, 77, 32-57.	5.9	123
16	Microgrid reliability modeling and battery scheduling using stochastic linear programming. Electric Power Systems Research, 2013, 103, 61-69.	3.6	121
17	Pipeline Scheduling and Inventory Management of a Multiproduct Distribution Oil System. Industrial & Lamp; Engineering Chemistry Research, 2006, 45, 7841-7855.	3.7	119
18	Bi-objective optimization approach to the design and planning of supply chains: Economic versus environmental performances. Computers and Chemical Engineering, 2011, 35, 1454-1468.	3.8	115

#	Article	IF	CITATIONS
19	Location–allocation approaches for hospital network planning under uncertainty. European Journal of Operational Research, 2015, 240, 791-806.	5.7	107
20	Supplier selection in the processed food industry under uncertainty. European Journal of Operational Research, 2016, 252, 801-814.	5.7	102
21	Optimal investment and scheduling of distributed energy resources with uncertainty in electric vehicle driving schedules. Energy, 2014, 64, 17-30.	8.8	93
22	A warehouse-based design model for reverse logistics. Journal of the Operational Research Society, 2006, 57, 615-629.	3.4	87
23	Detailed design of multipurpose batch plants. Computers and Chemical Engineering, 1994, 18, 1013-1042.	3.8	84
24	A strategic and tactical model for closed-loop supply chains. OR Spectrum, 2009, 31, 573-599.	3.4	83
25	Modelling a recovery network for WEEE: A case study in Portugal. Waste Management, 2011, 31, 1645-1660.	7.4	83
26	Metrics for bullwhip effect analysis. Journal of the Operational Research Society, 2013, 64, 1-16.	3.4	81
27	Planning and scheduling of industrial supply chains with reverse flows: A real pharmaceutical case study. Computers and Chemical Engineering, 2008, 32, 2606-2625.	3.8	80
28	The smart waste collection routing problem: Alternative operational management approaches. Expert Systems With Applications, 2018, 103, 146-158.	7.6	79
29	Addressing the uncertain quality and quantity of returns in closed-loop supply chains. Computers and Chemical Engineering, 2012, 47, 237-247.	3.8	77
30	A critical review on the design and retrofit of batch plants. Computers and Chemical Engineering, 2007, 31, 833-855.	3.8	74
31	Optimal scheduling for flexible job shop operation. International Journal of Production Research, 2005, 43, 2323-2353.	7.5	73
32	Integrating harvesting decisions in the design of agro-food supply chains. European Journal of Operational Research, 2019, 276, 247-258.	5.7	73
33	Planning waste cooking oil collection systems. Waste Management, 2013, 33, 1691-1703.	7.4	70
34	Incorporating social aspects in sustainable supply chains: Trends and future directions. Journal of Cleaner Production, 2019, 237, 117500.	9.3	70
35	Supply chain optimization of residual forestry biomass for bioenergy production: The case study of Portugal. Biomass and Bioenergy, 2015, 83, 245-256.	5.7	69
36	Reactive Scheduling Framework for a Multiproduct Pipeline with Inventory Management. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 5659-5672.	3.7	64

#	Article	IF	Citations
37	Strategic network design of downstream petroleum supply chains: Single versus multi-entity participation. Chemical Engineering Research and Design, 2013, 91, 1557-1587.	5.6	60
38	The effect of Inventory Record Inaccuracy in Information Exchange Supply Chains. European Journal of Operational Research, 2015, 243, 120-129.	5.7	59
39	Downstream oil supply chain management: A critical review and future directions. Computers and Chemical Engineering, 2016, 92, 78-92.	3.8	59
40	Optimal Periodic Scheduling of Batch Plants Using RTN-Based Discrete and Continuous-Time Formulations:  A Case Study Approach. Industrial & Engineering Chemistry Research, 2003, 42, 3346-3360.	3.7	57
41	An Operational Scheduling Model to Product Distribution through a Pipeline Network. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 5661-5682.	3.7	57
42	Organizing hospitals into networks: a hierarchical and multiservice model to define location, supply and referrals in planned hospital systems. OR Spectrum, 2012, 34, 319-348.	3.4	57
43	Effectiveness of extended producer responsibility policies implementation: The case of Portuguese and Spanish packaging waste systems. Journal of Cleaner Production, 2019, 210, 217-230.	9.3	56
44	On risk management of a two-stage stochastic mixed 0â€"1 model for the closed-loop supply chain design problem. European Journal of Operational Research, 2019, 274, 91-107.	5.7	56
45	The Wicked Character of Sustainable Supply Chain Management: Evidence from Sustainability Reports. Business Strategy and the Environment, 2016, 25, 449-477.	14.3	55
46	Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain. Computers and Chemical Engineering, 2018, 108, 314-336.	3.8	55
47	Describing and organizing green practices in the context of Green Supply Chain Management: Case studies. Resources, Conservation and Recycling, 2019, 145, 1-10.	10.8	55
48	Social sustainability management in the apparel supply chains. Journal of Cleaner Production, 2021, 280, 124214.	9.3	54
49	Integrated scheduling and inventory management of an oil products distribution system. Omega, 2013, 41, 955-968.	5.9	52
50	Integrating financial risk measures into the design and planning of closed-loop supply chains. Computers and Chemical Engineering, 2016, 85, 105-123.	3.8	52
51	The effect of uncertainty on the optimal closed-loop supply chain planning under different partnerships structure. Computers and Chemical Engineering, 2009, 33, 2144-2158.	3.8	51
52	Simultaneous Design and Scheduling of Multipurpose Plants Using Resource Task Network Based Continuous-Time Formulations. Industrial & Engineering Chemistry Research, 2005, 44, 343-357.	3.7	49
53	Heuristic batch sequencing on a multiproduct oil distribution system. Computers and Chemical Engineering, 2009, 33, 712-730.	3.8	49
54	Information sharing in supply chains with heterogeneous retailers. Omega, 2018, 79, 116-132.	5.9	49

#	Article	IF	Citations
55	Reactive scheduling in a make-to-order flexible job shop with re-entrant process and assembly: a mathematical programming approach. International Journal of Production Research, 2013, 51, 5120-5141.	7.5	48
56	Modeling the demand for long-term care services under uncertain information. Health Care Management Science, 2012, 15, 385-412.	2.6	46
57	Assessment and optimization of sustainable forest wood supply chains – A systematic literature review. Forest Policy and Economics, 2019, 105, 112-135.	3.4	45
58	Life Cycle Assessment for the Design of Chemical Processes, Products, and Supply Chains. Annual Review of Chemical and Biomolecular Engineering, 2020, 11, 203-233.	6.8	44
59	Simulation-based decision support tool for in-house logistics: the basis for a digital twin. Computers and Industrial Engineering, 2021, 153, 107094.	6. 3	43
60	Optimal two-dimensional layout of industrial facilities. International Journal of Production Research, 2001, 39, 2567-2593.	7.5	41
61	Building disaster preparedness and response capacity in humanitarian supply chains using the Social Vulnerability Index. European Journal of Operational Research, 2021, 292, 250-275.	5 . 7	41
62	Progresses and challenges in process industry supply chains optimization. Current Opinion in Chemical Engineering, 2012, 1, 446-452.	7.8	40
63	Optimal 3D layout of industrial facilities. International Journal of Production Research, 2002, 40, 1669-1698.	7.5	39
64	An integrated approach for planning a long-term care network with uncertainty, strategic policy and equity considerations. European Journal of Operational Research, 2015, 247, 321-334.	5.7	36
65	Economic and environmental concerns in planning recyclable waste collection systems. Transportation Research, Part E: Logistics and Transportation Review, 2014, 62, 34-54.	7.4	35
66	OVAP: A strategy to implement partial information sharing among supply chain retailers. Transportation Research, Part E: Logistics and Transportation Review, 2018, 110, 122-136.	7.4	35
67	Green Supply Chain Management: Conceptual Framework and Models for Analysis. Sustainability, 2021, 13, 8127.	3.2	35
68	Integrating decisions of product and closed-loop supply chain design under uncertain return flows. Computers and Chemical Engineering, 2018, 112, 211-238.	3.8	34
69	Design and Planning of Sustainable Industrial Networks: Application to a Recovery Network of Residual Products. Industrial & Engineering Chemistry Research, 2010, 49, 4230-4248.	3.7	33
70	Multi-depot vehicle routing problem: a comparative study of alternative formulations. International Journal of Logistics Research and Applications, 2020, 23, 103-120.	8.8	33
71	Process supply chains: Perspectives from academia and industry. Computers and Chemical Engineering, 2020, 132, 106606.	3.8	33
72	Sustainable Supply Chains: Key Challenges. Computer Aided Chemical Engineering, 2009, , 127-132.	0.5	32

#	Article	IF	Citations
73	Title is missing!. Annals of Operations Research, 2003, 120, 201-230.	4.1	31
74	Optimal design and retrofit of batch plants with a periodic mode of operation. Computers and Chemical Engineering, 2005, 29, 1293-1303.	3.8	31
75	A multi-objective meta-heuristic approach for the design and planning of green supply chains - MBSA. Expert Systems With Applications, 2016, 47, 71-84.	7.6	31
76	Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks. Computers and Industrial Engineering, 2019, 128, 920-936.	6.3	31
77	Decision-support challenges in the chemical-pharmaceutical industry: Findings and future research directions. Computers and Chemical Engineering, 2020, 134, 106672.	3 . 8	30
78	Moving towards an equitable long-term care network: A multi-objective and multi-period planning approach. Omega, 2016, 58, 69-85.	5 . 9	29
79	Planning and Sequencing Product Distribution in a Real-World Pipeline Network: An MILP Decomposition Approach. Industrial & Engineering Chemistry Research, 2012, 51, 4591-4609.	3.7	28
80	Simultaneous regular and non-regular production scheduling of multipurpose batch plants: A real chemical–pharmaceutical case study. Computers and Chemical Engineering, 2014, 67, 83-102.	3.8	28
81	An IT-enabled supply chain model: a simulation study. International Journal of Systems Science, 2014, 45, 2327-2341.	5 . 5	27
82	Dynamic modelling and scheduling of an industrial batch system. Computers and Chemical Engineering, 2002, 26, 671-686.	3.8	26
83	Design of Multipurpose Batch Plants: A Comparative Analysis between the STN, m-STN, and RTN Representations and Formulations. Industrial & Engineering Chemistry Research, 2008, 47, 6025-6044.	3.7	26
84	Production and maintenance planning optimisation in biopharmaceutical processes under performance decay using a continuous-time formulation: A multi-objective approach. Computers and Chemical Engineering, 2017, 107, 111-139.	3.8	26
85	An integrated approach for production lot sizing and raw material purchasing. European Journal of Operational Research, 2018, 269, 923-938.	5.7	26
86	Designing and planning the downstream oil supply chain under uncertainty using a fuzzy programming approach. Computers and Chemical Engineering, 2021, 151, 107373.	3.8	26
87	Optimal design of heat-integrated multipurpose batch facilities: a mixed-integer mathematical formulation. Computers and Chemical Engineering, 2001, 25, 547-559.	3.8	25
88	Life cycle assessment in chemical industry – a review. Current Opinion in Chemical Engineering, 2019, 26, 139-147.	7.8	25
89	Supply Chain Management with Optimal Scheduling. Industrial & Engineering Chemistry Research, 2008, 47, 116-132.	3.7	24
90	A supporting framework for maintenance capacity planning and scheduling: Development and application in the aircraft MRO industry. International Journal of Production Economics, 2019, 218, 1-15.	8.9	24

#	Article	IF	CITATIONS
91	A multi-objective matheuristic for designing and planning sustainable supply chains. Computers and Industrial Engineering, 2019, 135, 1203-1223.	6.3	24
92	Design and Planning of Closed-Loop Supply Chains: A Risk-Averse Multistage Stochastic Approach. Industrial & Design Engineering Chemistry Research, 2016, 55, 6236-6249.	3.7	23
93	A matheuristic decomposition approach for the scheduling of a single-source and multiple destinations pipeline system. European Journal of Operational Research, 2018, 268, 665-687.	5.7	23
94	Quantitative indicators for social sustainability assessment of society and product responsibility aspects in supply chains. Journal of International Studies, 2017, 10, 9-36.	1.9	23
95	Multiproduct pipeline scheduling integrating for inbound and outbound inventory management. Computers and Chemical Engineering, 2018, 115, 377-396.	3.8	21
96	A simulation-optimization approach to integrate process design and planning decisions under technical and market uncertainties: A case from the chemical-pharmaceutical industry. Computers and Chemical Engineering, 2017, 106, 796-813.	3.8	19
97	Integrated staff scheduling at a medical emergency service: An optimisation approach. Expert Systems With Applications, 2018, 112, 62-76.	7.6	19
98	A discrete time reactive scheduling model for new order insertion in job shop, make-to-order industries. International Journal of Production Research, 2010, 48, 7395-7422.	7.5	18
99	Collaborative Design and Tactical Planning of Downstream Petroleum Supply Chains. Industrial & Engineering Chemistry Research, 2014, 53, 17155-17181.	3.7	18
100	Assessing and improving management practices when planning packaging waste collection systems. Resources, Conservation and Recycling, 2014, 85, 116-129.	10.8	18
101	New General Discrete-Time Scheduling Model for Multipurpose Batch Plants. Industrial & Engineering Chemistry Research, 2013, 52, 17206-17220.	3.7	17
102	Order-up-to-level policy update procedure for a supply chain subject to market demand uncertainty. Computers and Industrial Engineering, 2017, 113, 347-355.	6.3	17
103	An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem. European Journal of Operational Research, 2021, 294, 70-90.	5.7	17
104	Comparing models for lot-sizing and scheduling of single-stage continuous processes: Operations research and process systems engineering approaches. Computers and Chemical Engineering, 2013, 52, 177-192.	3.8	16
105	Optimal planning and campaign scheduling of biopharmaceutical processes using a continuous-time formulation. Computers and Chemical Engineering, 2016, 91, 422-444.	3.8	16
106	A model-based decision support framework for the optimisation of production planning in the biopharmaceutical industry. Computers and Industrial Engineering, 2019, 129, 354-367.	6.3	16
107	Environmental monetization and risk assessment in supply chain design and planning. Journal of Cleaner Production, 2020, 270, 121552.	9.3	16
108	An application of a multi-agent auction-based protocol to the tactical planning of oil product transport in the Brazilian multimodal network. Computers and Chemical Engineering, 2013, 59, 17-32.	3.8	15

#	Article	IF	CITATIONS
109	Solution Methodology for Scheduling Problems in Batch Plants. Industrial & Engineering Chemistry Research, 2014, 53, 19265-19281.	3.7	15
110	The vehicle routing problem with backhauls towards a sustainability perspective: a review. Top, 2020, 28, 358-401.	1.6	15
111	A two-level optimisation-simulation method for production planning and scheduling: the industrial case of a human–robot collaborative assembly line. International Journal of Production Research, 2022, 60, 2942-2962.	7.5	15
112	Design of Multipurpose Plants Using the Resource-Task Network Unified Framework. Computers and Chemical Engineering, 1997, 21, S703-S708.	3.8	15
113	Selection of tailored practices for supply chain management. International Journal of Operations and Production Management, 2013, 33, 1040-1074.	5.9	14
114	Designing closed-loop supply chains with nonlinear dimensioning factors using ant colony optimization. Soft Computing, 2015, 19, 2245-2264.	3.6	14
115	Business strategy for sustainable development: Impact of life cycle inventory and life cycle impact assessment steps in supply chain design and planning. Business Strategy and the Environment, 2020, 29, 87-117.	14.3	14
116	A new matheuristic approach for the multi-depot vehicle routing problem with inter-depot routes. OR Spectrum, 2020, 42, 75-110.	3.4	14
117	The wicked problem of sustainable development in supply chains. Business Strategy and the Environment, 2022, 31, 46-58.	14.3	14
118	A hybrid metaheuristic for smart waste collection problems with workload concerns. Computers and Operations Research, 2022, 137, 105518.	4.0	14
119	Optimal Design and Layout of Industrial Facilities:Â A Simultaneous Approach. Industrial & Simultaneou	3.7	13
120	Synthesis and optimization of the recovery route for residual products under uncertain product demand. Computers and Operations Research, 2007, 34, 1463-1490.	4.0	13
121	Risk Management Framework for the Petroleum Supply Chain. Computer Aided Chemical Engineering, 2010, , 157-162.	0.5	13
122	Resilience assessment of supply chains under different types of disruption. Computer Aided Chemical Engineering, 2014, 34, 759-764.	0.5	13
123	Assessment of financial risk in the design and scheduling of multipurpose plants under demand uncertainty. International Journal of Production Research, 2021, 59, 6125-6145.	7.5	13
124	Design and Scheduling of Periodic Multipurpose Batch Plants under Uncertainty. Industrial & Engineering Chemistry Research, 2009, 48, 9655-9670.	3.7	12
125	Mixed Integer Linear Programming Formulation for Aiding Planning Activities in a Complex Pipeline Network. Industrial & Engineering Chemistry Research, 2012, 51, 11417-11433.	3.7	12
126	HOW TO DESIGN AND PLAN SUSTAINABLE SUPPLY CHAINS THROUGH OPTIMIZATION MODELS?. Pesquisa Operacional, 2018, 38, 363-388.	0.4	12

#	Article	IF	CITATIONS
127	Blood supply chain: a two-stage approach for tactical and operational planning. OR Spectrum, 2020, 42, 1023-1053.	3.4	12
128	ForeSim-BI: A predictive analytics decision support tool for capacity planning. Decision Support Systems, 2020, 131, 113266.	5.9	12
129	Blood inventory management: Ordering policies for hospital blood banks under uncertainty. International Transactions in Operational Research, 2023, 30, 273-301.	2.7	12
130	A Divide and Conquer Strategy for the Scheduling of Process Plants Subject to Changeovers Using Continuous-Time Formulations. Industrial & Engineering Chemistry Research, 2004, 43, 7939-7950.	3.7	11
131	Design of multipurpose production facilities: A RTN decomposition-based algorithm. Computers and Chemical Engineering, 1999, 23, S7-S10.	3.8	10
132	A Two-Stage Stochastic Model for the Design and Planning of a Multi-Product Closed Loop Supply Chain. Computer Aided Chemical Engineering, 2012, 30, 412-416.	0.5	10
133	A Simulated Annealing Algorithm for the Design and Planning of Supply Chains with Economic and Environmental Objectives. Computer Aided Chemical Engineering, 2012, 30, 21-25.	0.5	10
134	A MILP (Mixed Integer Linear Programming) decomposition solution to the scheduling of heavy oil derivatives in a real-world pipeline. Computers and Chemical Engineering, 2014, 66, 124-138.	3.8	10
135	Effective bullwhip metrics for multi-echelon distribution systems under order batching policies with cyclic demand. International Journal of Production Research, 2018, 56, 1593-1619.	7.5	10
136	A solution framework for the long-term scheduling and inventory management of straight pipeline systems with multiple-sources. Computers and Operations Research, 2021, 127, 105143.	4.0	10
137	Optimal design of multipurpose batch plants 1. Problem formulation. Computers and Chemical Engineering, 1993, 17, S33-S38.	3.8	9
138	Optimal Design and Layout of Industrial Facilities:Â An Application to Multipurpose Batch Plants. Industrial & Engineering Chemistry Research, 2002, 41, 3610-3620.	3.7	9
139	Modeling Integrated Biorefinery Supply Chains. Computer Aided Chemical Engineering, 2013, , 79-84.	0.5	9
140	Design and Planning of Sustainable Vaccine Supply Chain. Lecture Notes in Logistics, 2019, , 23-55.	0.8	9
141	Using Machine Learning for Enhancing the Understanding of Bullwhip Effect in the Oil and Gas Industry. Machine Learning and Knowledge Extraction, 2019, 1, 994-1012.	5.0	9
142	Redesign of a multipurpose batch pilot plant with cleaning in place (CIP) integration. Computers and Chemical Engineering, 1994, 18, S277-S281.	3.8	8
143	Towards supply chain sustainability: balancing costs with environmental and social impacts. Computer Aided Chemical Engineering, 2013, 32, 895-900.	0.5	8
144	Process Supply Chains Management $\tilde{A}^{\hat{a}}$, $\hat{A}^{\hat{c}}$ Where are We? Where to Go Next?. Frontiers in Energy Research, 2014, 2, .	2.3	8

#	Article	IF	CITATIONS
145	Downstream Petroleum Supply Chain Planning under Uncertainty. Computer Aided Chemical Engineering, 2015, 37, 1889-1894.	0.5	8
146	Optimization of Production Planning and Scheduling in the Ice Cream Industry. Computer Aided Chemical Engineering, 2015, 37, 2231-2236.	0.5	8
147	From problem structuring to optimization: A multi-methodological framework to assist the planning of medical training. European Journal of Operational Research, 2019, 273, 662-683.	5.7	8
148	Stochastic programming of vehicle to building interactions with uncertainty in PEVs driving for a medium office building. , 2013, , .		7
149	How to assess social aspects in supply chains?. Computer Aided Chemical Engineering, 2014, , 801-806.	0.5	7
150	Challenges and Perspectives of Process Systems Engineering in Supply Chain Management. Computer Aided Chemical Engineering, 2018, 44, 87-96.	0.5	7
151	Multi-objective optimization approach to design and planning hydrogen supply chain under uncertainty: A Portugal study case. Computer Aided Chemical Engineering, 2019, 46, 1309-1314.	0.5	7
152	An economic and environmental comparison between forest wood products – Uncoated woodfree paper, natural cork stoppers and particle boards. Journal of Cleaner Production, 2021, 296, 126469.	9.3	7
153	Pharmaceutical industry supply chains: How to sustainably improve access to vaccines?. Chemical Engineering Research and Design, 2022, 182, 324-341.	5.6	7
154	Optimal planning of closed loop supply chains: A discrete versus a continuous-time formulation. Computer Aided Chemical Engineering, 2007, 24, 673-678.	0.5	6
155	A Meta-Heuristics Approach for the Design and Scheduling of Multipurpose Batch Plants. Computer Aided Chemical Engineering, 2010, 28, 1315-1320.	0.5	6
156	Supply Chain Risk Management Review and a New Framework for Petroleum Supply Chains. , 2011, , 227-264.		6
157	Multimodal Green Food Supply Chain Design and Planning under Uncertainty. Computer Aided Chemical Engineering, 2016, 38, 181-186.	0.5	6
158	Modelling and Analysing Supply Chain Resilience Flow Complexity. Computer Aided Chemical Engineering, 2018, 43, 815-820.	0.5	6
159	Adjustable Robust Optimization for Planning Logistics Operations in Downstream Oil Networks. Processes, 2019, 7, 507.	2.8	6
160	Decomposition approaches for the design and scheduling of multiproduct multistage batch plants with parallel lines. Computers and Chemical Engineering, 2019, 127, 111-126.	3.8	6
161	Scheduling of a single-source multiproduct pipeline system by a matheuristic approach: Combining simulated annealing and MILP. Computers and Chemical Engineering, 2020, 136, 106784.	3.8	6
162	A graph modeling framework to design and plan the downstream oil supply chain. International Transactions in Operational Research, 2022, 29, 1502-1519.	2.7	6

#	Article	IF	CITATIONS
163	Optimal design of multipurpose batch plants 1. Problem formulation. Computers and Chemical Engineering, 1993, 17, S33-S38.	3.8	6
164	Scheduling of industrial distribution manifolds with pre-conditions. European Journal of Operational Research, 1999, 119, 461-478.	5.7	5
165	Pipeline scheduling and distribution centre management—A real-world scenario at CLC. Computer Aided Chemical Engineering, 2006, 21, 2135-2140.	0.5	5
166	The retrofit of a closed-loop distribution network: the case of lead batteries. Computer Aided Chemical Engineering, 2010, , 1213-1218.	0.5	5
167	Strategic Planning of Petroleum Supply Chains. Computer Aided Chemical Engineering, 2011, 29, 1738-1742.	0.5	5
168	Optimization of Closed-Loop Supply Chains under Uncertain Quality of Returns. Computer Aided Chemical Engineering, 2011, 29, 945-949.	0.5	5
169	Supply Chain Design towards sustainability. Computer Aided Chemical Engineering, 2014, 34, 789-794.	0.5	5
170	Sustainable Supply Chain: Monetization of Environmental Impacts. Computer Aided Chemical Engineering, 2018, 43, 773-778.	0.5	5
171	Green Supply Chain: Integrating Financial Risk Measures while Monetizing Environmental Impacts. Computer Aided Chemical Engineering, 2019, 46, 1549-1554.	0.5	5
172	Enhancing optimization planning models for health human resources management with foresight. Omega, 2021, 103, 102384.	5.9	5
173	Network design optimization of waste management systems: the case of plastics. Computer Aided Chemical Engineering, 2021, 50, 185-190.	0.5	5
174	A Lean Approach to Developing Sustainable Supply Chains. Sustainability, 2021, 13, 3714.	3.2	5
175	A hybrid simulation approach applied in sustainability performance assessment in make-to-order supply chains: The case of a commercial aircraft manufacturer. Journal of Simulation, 2023, 17, 32-57.	1.5	5
176	Close loop supply chains: Managing product recovery portfolio. Computer Aided Chemical Engineering, 2006, 21, 1875-1880.	0.5	4
177	Effect of life cycle impact assessment on the design and scheduling of a recovery network for industrial polluted waste. Computer Aided Chemical Engineering, 2009, 26, 1177-1182.	0.5	4
178	Supply Chain Design and Planning with Environmental Impacts. Computer Aided Chemical Engineering, 2011, 29, 1155-1159.	0.5	4
179	SCant-design: Closed loop supply chain design using ant colony optimization. , 2012, , .		4
180	Multi-stage stochastic optimization of the design and planning of a Closed-Loop Supply Chain. Computer Aided Chemical Engineering, 2013, 32, 691-696.	0.5	4

#	Article	IF	CITATIONS
181	Methodological approach to study the dynamics of production networks: discrete-event simulation modelling. International Journal of Logistics Systems and Management, 2013, 16, 211.	0.2	4
182	Combining Supplier Selection and Production-Distribution Planning in Food Supply Chains. Computer Aided Chemical Engineering, 2014, 33, 409-414.	0.5	4
183	Supply chain design and planning accounting for the Triple Bottom Line. Computer Aided Chemical Engineering, 2015, 37, 1841-1846.	0.5	4
184	On the complexity of production planning and scheduling in the pharmaceutical industry: the Delivery Trade-offs Matrix. Computer Aided Chemical Engineering, 2015, 37, 1865-1870.	0.5	4
185	Design and Planning ofÂSustainable Supply Chains. Computer Aided Chemical Engineering, 2015, 36, 333-353.	0.5	4
186	Robust Optimization for Petroleum Supply Chain Collaborative Design and Planning. Computer Aided Chemical Engineering, 2016, , 1569-1574.	0.5	4
187	Sustainable batch process retrofit design under uncertainty—An integrated methodology. Computers and Chemical Engineering, 2017, 102, 226-237.	3.8	4
188	CLSC design with simultaneous consideration of product design for manufacturing and remanufacturing. Computer Aided Chemical Engineering, 2017, 40, 1453-1458.	0.5	4
189	Mixed-integer linear programming approach for product design for life-cycle profit. Computers and Industrial Engineering, 2019, 137, 106079.	6.3	4
190	Integrating Simulation and Optimization for Process Planning and Scheduling Problems. Computer Aided Chemical Engineering, 2019, , 1441-1446.	0.5	4
191	Social Life Cycle Assessment of Pulp and Paper Production – A Portuguese Case Study. Computer Aided Chemical Engineering, 2020, 48, 15-20.	0.5	4
192	Towards sustainable development: Green supply chain design and planning using monetization methods. Business Strategy and the Environment, 2022, 31, 1369-1394.	14.3	4
193	A solution methodology for a Smart Waste Collection Routing Problem with workload concerns: computational and managerial insights from a real case study. International Journal of Systems Science: Operations and Logistics, 0, , 1-31.	3.0	4
194	A branch and bound procedure for the design of multipurpose batch plants with uncertain demands. Computers and Chemical Engineering, 1996, 20, S1179-S1184.	3.8	3
195	Comparison between STN, m-STN and RTN for the design of multipurpose batch plants. Computer Aided Chemical Engineering, 2003, 14, 257-262.	0.5	3
196	Optimal supply chain operation - a discrete model formulation. Computer Aided Chemical Engineering, 2004, 18, 877-882.	0.5	3
197	A design and scheduling RTN continuous-time formulation. Computer Aided Chemical Engineering, 2005, , 1213-1218.	0.5	3
198	Design and planning of supply chains with reverse flows. Computer Aided Chemical Engineering, 2005, 20, 1075-1080.	0.5	3

#	Article	IF	CITATIONS
199	An integrated model for the design and planning of supply chains with product return. Computer Aided Chemical Engineering, 2006, , 2129-2134.	0.5	3
200	Optimal operation of a real multiproduct pipeline and storage system: Economical versus Operational Objectives. Computer Aided Chemical Engineering, 2009, 26, 399-404.	0.5	3
201	Supply Chains Planning with Reverse Flows: Optimal Alternative Time Formulations. Industrial & Engineering Chemistry Research, 2011, 50, 5005-5022.	3.7	3
202	Performance measurement in buyer-supplier collaboration programmes: implementing the common scorecard. International Journal of Procurement Management, 2011, 4, 259.	0.2	3
203	Integrating Economic and Environmental Aspects in the Design and Planning of Supply Chains. Computer Aided Chemical Engineering, 2012, 30, 112-116.	0.5	3
204	Multi-Objective Meta-Heuristic Approach supported by an Improved Local Search Strategy for the Design and Planning of Supply Chain Networks. Computer Aided Chemical Engineering, 2014, 33, 313-318.	0.5	3
205	Petroleum Supply Chain Network Design and Tactical Planning with Demand Uncertainty. Studies in Big Data, 2015, , 59-66.	1.1	3
206	Framework for assessing social sustainability in supply chains. Computer Aided Chemical Engineering, 2016, , 2019-2024.	0.5	3
207	A Decomposition Approach for the Long-Term Scheduling of a Single-Source Multiproduct Pipeline Network. Springer Proceedings in Mathematics and Statistics, 2018, , 235-248.	0.2	3
208	Simulation-Optimization Approach for the Decision-Support on the Planning and Scheduling of Automated Assembly Lines. , 2018, , .		3
209	Life cycle assessment of pulp and paper production – A Portuguese case study. Computer Aided Chemical Engineering, 2018, 43, 809-814.	0.5	3
210	Towards an Integrated Framework for Aerospace Supply Chain Sustainability. Springer Proceedings in Mathematics and Statistics, 2019, , 1-13.	0.2	3
211	A Simulated Annealing Approach for the BiObjective Design and Scheduling of Multipurpose Batch Plants. Computer Aided Chemical Engineering, 2011, , 865-869.	0.5	3
212	Modeling Inter-sector Health Policy Options and Health Gains in a Long-term Care Network: A Location-Allocation Stochastic Planning Approach. Studies in Big Data, 2015, , 23-31.	1.1	3
213	Simulation of in-house logistics operations for manufacturing. International Journal of Computer Integrated Manufacturing, 2022, 35, 989-1009.	4.6	3
214	Design of a recovery network in Portugal: the electric and electronic equipment case. , 2008, , .		2
215	Multi-objective design of multipurpose batch facilities using economic assessments. Computer Aided Chemical Engineering, 2008, 25, 271-276.	0.5	2
216	A Decomposition Approach for the Operational Scheduling of a Multiproduct Pipeline. Computer Aided Chemical Engineering, 2010, 28, 1207-1212.	0.5	2

#	Article	IF	CITATIONS
217	Inventory Management MILP Modeling for Tank Farm Systems. Computer Aided Chemical Engineering, 2010, , 727-732.	0.5	2
218	A new heuristic for car sequencing based on an integer programming approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 164-169.	0.4	2
219	Designing and planning of closed-loop supply chains for risk and economical optimization. Computer Aided Chemical Engineering, 2012, , 447-451.	0.5	2
220	Optimum Design and Planning of Resilient and Uncertain Closed-Loop Supply Chains. Computer Aided Chemical Engineering, 2012, 30, 407-411.	0.5	2
221	Risk management in the design and planning of closed-loop supply chains. Computer Aided Chemical Engineering, 2013, 32, 475-480.	0.5	2
222	Optimal Scheduling of Multi-stage Multi-product Biopharmaceutical Processes Using a Continuoustime Formulation. Computer Aided Chemical Engineering, 2014, 33, 301-306.	0.5	2
223	Bullwhip effect metrics for multi-echelon systems under order batching policies with cyclic demand., 2015,,.		2
224	Green supply chain design and planning. , 2015, , .		2
225	Optimisation of Maintenance Planning into the Production of Biopharmaceuticals with Performance Decay using a Continuous-time Formulation. Computer Aided Chemical Engineering, 2016, 38, 1749-1754.	0.5	2
226	Optimising Sustainable Supply Chains: A Summarised View of Current and Future Perspectives. Lecture Notes in Logistics, 2017, , 1-11.	0.8	2
227	Designing Integrated Biorefineries Supply Chain: Combining Stochastic Programming Models with Scenario Reduction Methods. Computer Aided Chemical Engineering, 2017, 40, 901-906.	0.5	2
228	Sustainable supply chain design and planning: the importance of life cycle scope definition. Computer Aided Chemical Engineering, 2017, 40, 541-546.	0.5	2
229	Stochastic Modeling Approach for Downstream Oil Supply Chain. Computer Aided Chemical Engineering, 2017, , 1339-1344.	0.5	2
230	Risk assessment for the design and scheduling optimization of periodic multipurpose batch plants under demand uncertainty. Computer Aided Chemical Engineering, 2018, 43, 991-996.	0.5	2
231	Design and Planning of Agri-Food Supply Chains. Computer Aided Chemical Engineering, 2019, , 55-60.	0.5	2
232	Supply Chain Resilience: An Optimisation Model to Identify the Relative Importance of SC Disturbances. Springer Proceedings in Mathematics and Statistics, 2019, , 189-198.	0.2	2
233	Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems. International Journal of Forecasting, 2022, 38, 178-192.	6.5	2
234	Optimization of a Recyclable Waste Collection System - The Valorsul Case Study. Studies in Big Data, 2015, , 97-105.	1.1	2

#	Article	IF	Citations
235	Intermodal Terminal Planning under Decentralized Management: Optimization Model for Rail-Road Terminals and Application to Portugal. Future Transportation, 2021, $1,533-558$.	2.3	2
236	Optimal design of heat-integrated multipurpose batch facilities. Computer Aided Chemical Engineering, 2000, , 715-720.	0.5	1
237	Reply to Comments on "An Improved Continuous-Time Formulation for the Short-term Scheduling of Multipurpose Batch Plants― Industrial & Engineering Chemistry Research, 2001, 40, 5042-5042.	3.7	1
238	Synthesis and optimisation of the recovery route for residual products. Computer Aided Chemical Engineering, 2003, , 95-100.	0.5	1
239	A stochastic model for the synthesis of a recovery network route for hazardous materials. Computer Aided Chemical Engineering, 2004, , 391-396.	0.5	1
240	Optimal scheduling of batch industrial facilities. Journal of the Operational Research Society, 2004, 55, 116-122.	3.4	1
241	Optimal scheduling of supply chains: A new continuous-time formulation. Computer Aided Chemical Engineering, 2005, 20, 1171-1176.	0.5	1
242	Decomposition based algorithm for the design and scheduling of multipurpose batch plants. Computer Aided Chemical Engineering, 2006, 21, 1051-1056.	0.5	1
243	Optimal reactive scheduling of multipurpose, make-to-order industries. Computer Aided Chemical Engineering, 2006, , 1587-1592.	0.5	1
244	Case study of a regional network for the recovery of hazardous materials. Computer Aided Chemical Engineering, 2006, , 1797-1802.	0.5	1
245	Operations and supply chain management. , 2008, , .		1
246	Oil Products Distribution Systems: Decomposition Approach on Pipeline and Inventory Scheduling. Computer Aided Chemical Engineering, 2009, , 1971-1976.	0.5	1
247	Fuzzy-like Optimization Approach for Design and Scheduling of Multipurpose Non-Periodic Facilities. Computer Aided Chemical Engineering, 2010, , 937-942.	0.5	1
248	A MILP Planning Model for a Real-world Multiproduct Pipeline Network. Computer Aided Chemical Engineering, 2011, , 995-999.	0.5	1
249	Design of an electric and electronic equipment recovery network in Portugal - Costs vs. Sustainability. Computer Aided Chemical Engineering, 2011, 29, 1200-1204.	0.5	1
250	Design and Planning of Downstream Petroleum Supply Chains. Computer Aided Chemical Engineering, 2012, , 432-436.	0.5	1
251	Regular and non-regular production scheduling of multipurpose batch plants. Computer Aided Chemical Engineering, 2012, 30, 767-771.	0.5	1
252	Supply Chain Management – Optimal Planning for Sustainable Products' Portfolio. Computer Aided Chemical Engineering, 2013, 32, 559-564.	0.5	1

#	Article	IF	CITATIONS
253	A new methodology to identify supply chains sustainability bottlenecks. Computer Aided Chemical Engineering, 2013, , 541-546.	0.5	1
254	Energy from Lignocellulosic Biomass: Supply Chain Modeling to Maximize Net Energy Production. Computer Aided Chemical Engineering, 2014, , 481-486.	0.5	1
255	Network Design and Planning of Resilient Supply Chains. Computer Aided Chemical Engineering, 2014, 33, 1219-1224.	0.5	1
256	Introducing health gains in location-allocation models: A stochastic model for planning the delivery of long-term care. Journal of Physics: Conference Series, 2015, 616, 012007.	0.4	1
257	Performance metrics for a supply chain subject to stochastic demand. , 2015, , .		1
258	The Influence of Corporate Social Responsibility on Economic Performance Within Supply Chain Planning. Lecture Notes in Economics and Mathematical Systems, 2016, , 151-156.	0.3	1
259	Evaluating Supply Chain Resilience Under Different Types of Disruption. Lecture Notes in Economics and Mathematical Systems, 2016, , 123-129.	0.3	1
260	Green Supply Chain Design and Planning: The Importance of Decision Integration in Optimization Models. Springer Proceedings in Mathematics and Statistics, 2018, , 249-257.	0.2	1
261	Oil product distribution planning via robust optimization. Computer Aided Chemical Engineering, 2018, 43, 949-954.	0.5	1
262	Dynamic Approaches to Solve the Smart Waste Collection Routing Problem. Springer Proceedings in Mathematics and Statistics, 2019, , 173-188.	0.2	1
263	Design and Planning Supply Chains with Beneficial Societal Goals. Computer Aided Chemical Engineering, 2019, 47, 439-444.	0.5	1
264	Fostering long-term care planning in practice: extending objectives and advancing stochastic treatment within location-allocation modelling. European Journal of Operational Research, 2021, 291, 1041-1061.	5.7	1
265	The impact of CO2 pricing in SC Resilience – An optimisation model. Computer Aided Chemical Engineering, 2021, 50, 927-932.	0.5	1
266	Waste Collection Planning Based on Real-Time Information. Springer Proceedings in Mathematics and Statistics, 2018, , 325-337.	0.2	1
267	Framework to Batch Process Retrofit - A Continuous Improvement Approach. Computer Aided Chemical Engineering, 2014, 33, 1357-1362.	0.5	1
268	Searching for a Solution Method for the Smart Waste Collection Routing Problem. Springer Proceedings in Mathematics and Statistics, 2021, , 1-14.	0.2	1
269	Design of distribution manifolds with operational constraints. Computers and Chemical Engineering, 1999, 23, S3-S6.	3.8	0
270	Dynamic modelling and scheduling of an industrial batch digester cooking system. Computer Aided Chemical Engineering, 2001, 9, 847-852.	0.5	0

#	Article	IF	CITATIONS
271	Periodic scheduling of multiproduct continuous plants using a RTN continuous-time formulation. Computer Aided Chemical Engineering, 2004, 18, 901-906.	0.5	О
272	Design and retrofit of periodic batch plants: A RTN based approach. Computer Aided Chemical Engineering, 2004, 18, 973-978.	0.5	0
273	A new strategy for the scheduling of process plants subject to changeovers. Computer Aided Chemical Engineering, 2004, , 907-912.	0.5	О
274	Rescheduling of medium term pipeline operation with tank farm inventory management. Computer Aided Chemical Engineering, 2007, , 667-672.	0.5	0
275	Scheduling of job shop, make-to-order industries with recirculation and assembly: a MILP approach. , 2008, , .		О
276	Oil products pipeline scheduling with tank farm inventory management. Computer Aided Chemical Engineering, 2008, 25, 277-282.	0.5	0
277	A Continuous-Time Approach to Supply Chain Planning: Managing Product Portfolios subject to Market Uncertainty under Different Partnership Structures. Computer Aided Chemical Engineering, 2009, , 973-978.	0.5	0
278	An Eco-Efficiency Study for a WEEE Recovery Network: The Portuguese Case. Computer Aided Chemical Engineering, 2009, 27, 2073-2078.	0.5	0
279	A Decomposition Based Algorithm for the Design of Multipurpose Batch Facilities Using Economic Assessments. Computer Aided Chemical Engineering, 2009, , 429-434.	0.5	0
280	Optimal Scheduling of a Multiproduct Continuous Paper Plant. Computer Aided Chemical Engineering, 2009, 27, 1425-1430.	0.5	0
281	An Efficient and Fast General Optimization Model for a Sustainable Recovery Network of Industrial Polluted Wastes. Computer Aided Chemical Engineering, 2010, 28, 1087-1092.	0.5	O
282	Decision Support System for Multiproduct Pipeline and Inventory Management Systems. Computer Aided Chemical Engineering, 2011, 29, 910-914.	0.5	0
283	Transportation Planning of Oil Products. Computer Aided Chemical Engineering, 2012, , 387-391.	0.5	0
284	A Mixed Integer Linear Program decomposition solution to the scheduling activities in a real-world pipeline used to transport heavy oil derivatives Computer Aided Chemical Engineering, 2013, , 595-600.	0.5	0
285	Decision Support Tool for Strategic Planning in Supply Chains. Computer Aided Chemical Engineering, 2014, 33, 895-900.	0.5	0
286	Supply chain., 2015,,.		0
287	A Metaheuristic for Solving Large-Scale Two-Stage Stochastic Mixed 0-1 Programs with the Time Stochastic Dominance Risk Averse Strategy. Computer Aided Chemical Engineering, 2015, 37, 857-862.	0.5	0
288	Risk measures in a multi-stage stochastic supply chain approach. , 2015, , .		0

#	Article	IF	CITATIONS
289	Planning of a multiproduct pipeline integrating blending and distribution. Computer Aided Chemical Engineering, 2015, 37, 1847-1852.	0.5	O
290	Challenges and Opportunities in Sustainable Supply Chains. Computer Aided Chemical Engineering, 2016, 38, 2409.	0.5	0
291	Optimization and Monte Carlo Simulation for Product Launch Planning under Uncertainty. Computer Aided Chemical Engineering, 2016, , 421-426.	0.5	O
292	Optimization of Production Scheduling in the Mould Making Industry. Lecture Notes in Economics and Mathematical Systems, 2016, , 165-174.	0.3	0
293	Network formulations for the design and scheduling of multiproduct batch plants with parallel lines. Computer Aided Chemical Engineering, 2018, 43, 1165-1170.	0.5	O
294	Scheduling of a Multiproduct and Multiple Destinations Pipeline System with Repumping Operations. Computer Aided Chemical Engineering, 2018, 43, 931-936.	0.5	0
295	Supply chain management under product demand and lead time uncertainty. International Journal of Operational Research, 2020, 37, 453.	0.2	O
296	CO2 Sustainable Recovery Network Cluster for Carbon Capture and Sequestration. Computer Aided Chemical Engineering, 2011, 29, 1190-1194.	0.5	0
297	An Agent-Based Collaborative Model For Supply Chain Management Simulation. , 2012, , .		O
298	Periodic Versus Non-periodic Multipurpose Batch Plant Scheduling: A Paint Industry Case Study. CIM Series in Mathematical Sciences, 2015, , 445-465.	0.4	0
299	Design and Planning of Sustainable Supply Chains: The Case Study of a Tissue Paper Business. Springer Proceedings in Mathematics and Statistics, 2018, , 411-421.	0.2	O
300	A Column Generation-Based Diving Heuristic for Staff Scheduling at an Emergency Medical Service. Springer Proceedings in Mathematics and Statistics, 2019, , 233-245.	0.2	0
301	A stochastic environmental model to deal with uncertainty in life cycle impact assessment. Computer Aided Chemical Engineering, 2019, 46, 1543-1548.	0.5	O
302	Design and Planning of Green Supply Chains with Risk Concerns. Springer Proceedings in Mathematics and Statistics, 2021, , 145-153.	0.2	0
303	A Multi-objective and Multi-period Model to the Design and Operation of a Hydrogen Supply Chain: An Applied Case in Portugal. Springer Proceedings in Mathematics and Statistics, 2021, , 15-24.	0.2	0
304	Merging Resilience and Sustainability in Supply Chain Design. Springer Proceedings in Mathematics and Statistics, 2021, , 119-128.	0.2	0