
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7632375/publications.pdf Version: 2024-02-01

ΚΛΟΙ-ΔΝΝΕ ΒΟΔΎΤΗΕΝ

#	Article	IF	CITATIONS
1	Forage quality in tundra grasslands under herbivory: Siliconâ€based defences, nutrients and their ratios in grasses. Journal of Ecology, 2022, 110, 129-143.	4.0	4
2	Interfering with neighbouring communities: Allelopathy astray in the tundra delays seedling development. Functional Ecology, 2021, 35, 266-276.	3.6	2
3	Stomping in silence: Conceptualizing trampling effects on soils in polar tundra. Functional Ecology, 2021, 35, 306-317.	3.6	26
4	Niche construction mediates climate effects on recovery of tundra heathlands after extreme event. PLoS ONE, 2021, 16, e0245929.	2.5	3
5	Using nearâ€infrared reflectance spectroscopy (NIRS) to estimate carbon and nitrogen stable isotope composition in animal tissues. Ecology and Evolution, 2021, 11, 10483-10488.	1.9	3
6	Sedimentary ancient DNA shows terrestrial plant richness continuously increased over the Holocene in northern Fennoscandia. Science Advances, 2021, 7, .	10.3	30
7	The paradox of forbs in grasslands and the legacy of the mammoth steppe. Frontiers in Ecology and the Environment, 2021, 19, 584-592.	4.0	26
8	Variable responses of carbon and nitrogen contents in vegetation and soil to herbivory and warming in highâ€Arctic tundra. Ecosphere, 2021, 12, e03746.	2.2	5
9	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
10	One leaf for all: Chemical traits of single leaves measured at the leaf surface using nearâ€infrared reflectance spectroscopy. Methods in Ecology and Evolution, 2020, 11, 1061-1071.	5.2	12
11	Interactions between winter and summer herbivory affect spatial and temporal plant nutrient dynamics in tundra grassland communities. Oikos, 2020, 129, 1229-1242.	2.7	17
12	Towards a global arctic-alpine model for Near-infrared reflectance spectroscopy (NIRS) predictions of foliar nitrogen, phosphorus and carbon content. Scientific Reports, 2019, 9, 8259.	3.3	21
13	Herbivore Effects on Ecosystem Process Rates in a Low-Productive System. Ecosystems, 2019, 22, 827-843.	3.4	25
14	Facilitation mediates species presence beyond their environmental optimum. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 38, 24-30.	2.7	11
15	Holocene floristic diversity and richness in northeast Norway revealed by sedimentary ancient <scp>DNA</scp> (<i>sed</i> a <scp>DNA</scp>) and pollen. Boreas, 2019, 48, 299-316.	2.4	45
16	High resistance to climatic variability in a dominant tundra shrub species. PeerJ, 2019, 7, e6967.	2.0	7
17	Gatekeepers to the effects of climate warming? Niche construction restricts plant community changes along a temperature gradient. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 71-81.	2.7	29
18	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	2.7	141

#	Article	IF	CITATIONS
19	Transferability of biotic interactions: Temporal consistency of arctic plant–rodent relationships is poor. Ecology and Evolution, 2018, 8, 9697-9711.	1.9	13
20	The domestic basis of the scientific career: gender inequalities in ecology in France and Norway. European Educational Research Journal, 2017, 16, 230-257.	2.1	6
21	Prevention of Marine Biofouling Using the Natural Allelopathic Compound Batatasin-III and Synthetic Analogues. Journal of Natural Products, 2017, 80, 2001-2011.	3.0	32
22	<i>Rangifer</i> management controls a climateâ€sensitive tundra state transition. Ecological Applications, 2017, 27, 2416-2427.	3.8	42
23	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	1.2	47
24	A portfolio effect of shrub canopy height on species richness in both stressful and competitive environments. Functional Ecology, 2016, 30, 60-69.	3.6	33
25	Mutual positive effects between shrubs in an arid ecosystem. Scientific Reports, 2015, 5, 14710.	3.3	25
26	Batatasinâ€III and the allelopathic capacity of <i>Empetrum nigrum</i> . Nordic Journal of Botany, 2015, 33, 225-231.	0.5	19
27	Disjunct populations of <scp>E</scp> uropean vascular plant species keep the same climatic niches. Global Ecology and Biogeography, 2015, 24, 1401-1412.	5.8	39
28	Future changes in the supply of goods and services from natural ecosystems: prospects for the European north. Ecology and Society, 2015, 20, .	2.3	19
29	Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients. Journal of Ecology, 2015, 103, 701-713.	4.0	23
30	Fungal endophyte diversity in tundra grasses increases by grazing. Fungal Ecology, 2015, 17, 41-51.	1.6	15
31	What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review. Environmental Evidence, 2015, 4, .	2.7	70
32	Definition of sampling units begets conclusions in ecology: the case of habitats for plant communities. PeerJ, 2015, 3, e815.	2.0	6
33	Determination of plant silicon content with near infrared reflectance spectroscopy. Frontiers in Plant Science, 2014, 5, 496.	3.6	23
34	Fifty thousand years of Arctic vegetation and megafaunal diet. Nature, 2014, 506, 47-51.	27.8	505
35	Complementary impacts of small rodents and semiâ€domesticated ungulates limit tall shrub expansion in the tundra. Journal of Applied Ecology, 2014, 51, 234-241.	4.0	58
36	Phenology and Cover of Plant Growth Forms Predict Herbivore Habitat Selection in a High Latitude Ecosystem. PLoS ONE, 2014, 9, e100780.	2.5	31

#	Article	IF	CITATIONS
37	More than herbivory: levels of silicaâ€based defences in grasses vary with plant species, genotype and location. Oikos, 2013, 122, 30-41.	2.7	53
38	What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review protocol. Environmental Evidence, 2013, 2, .	2.7	11
39	Shrub patch configuration at the landscape scale is related to diversity of adjacent herbaceous vegetation. Plant Ecology and Diversity, 2013, 6, 257-268.	2.4	14
40	Shedding new light on the diet of Norwegian lemmings: DNA metabarcoding of stomach content. Polar Biology, 2013, 36, 1069-1076.	1.2	50
41	Thermal niches are more conserved at cold than warm limits in arcticâ€ e lpine plant species. Global Ecology and Biogeography, 2013, 22, 933-941.	5.8	60
42	Arctic Small Rodents Have Diverse Diets and Flexible Food Selection. PLoS ONE, 2013, 8, e68128.	2.5	54
43	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	9.5	200
44	Ecological assembly rules in plant communities—approaches, patterns and prospects. Biological Reviews, 2012, 87, 111-127.	10.4	717
45	New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Molecular Ecology, 2012, 21, 1821-1833.	3.9	259
46	DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 2012, 21, 3647-3655.	3.9	262
47	Kit for detection of fungal endophytes of grasses yields inconsistent results. Methods in Ecology and Evolution, 2011, 2, 197-201.	5.2	11
48	The Ghost of Development Past: the Impact of Economic Security Policies on Saami Pastoral Ecosystems. Ecology and Society, 2011, 16, .	2.3	35
49	Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic and Applied Ecology, 2011, 12, 643-653.	2.7	74
50	Additive Partitioning of Diversity Reveals No Scale-dependent Impacts of Large Ungulates on the Structure of Tundra Plant Communities. Ecosystems, 2010, 13, 157-170.	3.4	30
51	Large-scale grazing history effects on Arctic-alpine germinable seed banks. Plant Ecology, 2010, 207, 321-331.	1.6	12
52	Ecosystem disturbance reduces the allelopathic effects of Empetrum hermaphroditum humus on tundra plants. Journal of Vegetation Science, 2010, 21, no-no.	2.2	18
53	Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. Ecography, 2010, 33, 1004-1014.	4.5	148
54	Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology, 2009, 15, 1153-1172.	9.5	344

#	Article	IF	CITATIONS
55	Predictors of plant phenology in a diverse highâ€ŀatitude alpine landscape: growth forms and topography. Journal of Vegetation Science, 2009, 20, 903-915.	2.2	30
56	Structural characteristics of a low Arctic tundra ecosystem and the retreat of the Arctic fox. Biological Conservation, 2007, 135, 459-472.	4.1	85
57	Endozoochory varies with ecological scale and context. Ecography, 2007, 30, 308-320.	4.5	31
58	Induced Shift in Ecosystem Productivity? Extensive Scale Effects of Abundant Large Herbivores. Ecosystems, 2007, 10, 773-789.	3.4	162
59	Can Reindeer Overabundance Cause a Trophic Cascade?. Ecosystems, 2007, 10, 607-622.	3.4	79
60	Infertile times: response to damage in genets of the clonal sedge CarexÂbigelowii. Plant Ecology, 2006, 187, 83-95.	1.6	12
61	More efficient estimation of plant biomass. Journal of Vegetation Science, 2004, 15, 653-660.	2.2	80
62	Intraclonal variation in defence substances and palatability: a study onCarexand lemmings. Oikos, 2004, 105, 461-470.	2.7	21
63	Terrestrial trophic dynamics in the Canadian Arctic. Canadian Journal of Zoology, 2003, 81, 827-843.	1.0	66
64	Effect of Muskox Carcasses on Nitrogen Concentration in Tundra Vegetation. Arctic, 2002, 55, .	0.4	53
65	Reindeer reduce biomass of preferred plant species. Journal of Vegetation Science, 2001, 12, 473-480.	2.2	77
66	Tolerance of the arctic graminoid <i>Luzula arcuata</i> ssp. <i>confusa</i> to simulated grazing in two nitrogen environments. Canadian Journal of Botany, 2000, 78, 1108-1113.	1.1	9
67	Tolerance of the arctic graminoid <i>Luzula arcuata</i> ssp. <i>confusa</i> to simulated grazing in two nitrogen environments. Canadian Journal of Botany, 2000, 78, 1108-1113.	1.1	15