Andrea G Hohmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7632159/publications.pdf

Version: 2024-02-01

43 papers 3,630 citations

201674 27 h-index 243625 44 g-index

46 all docs

46 docs citations

46 times ranked

3718 citing authors

#	Article	IF	CITATIONS
1	An endocannabinoid mechanism for stress-induced analgesia. Nature, 2005, 435, 1108-1112.	27.8	655
2	The Endocannabinoid System and Pain. CNS and Neurological Disorders - Drug Targets, 2009, 8, 403-421.	1.4	368
3	Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nature Neuroscience, 2010, 13, 1265-1270.	14.8	289
4	Cannabinoids as Pharmacotherapies for Neuropathic Pain: From the Bench to the Bedside. Neurotherapeutics, 2009, 6, 713-737.	4.4	267
5	The cannabinoid system and pain. Neuropharmacology, 2017, 124, 105-120.	4.1	200
6	Chronic Cannabinoid Receptor 2 Activation Reverses Paclitaxel Neuropathy Without Tolerance or Cannabinoid Receptor 1–Dependent Withdrawal. Biological Psychiatry, 2015, 77, 475-487.	1.3	179
7	The endocannabinoid system and cancer: therapeutic implication. British Journal of Pharmacology, 2011, 163, 1447-1463.	5.4	168
8	Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: Effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. Pharmacological Research, 2013, 67, 94-109.	7.1	135
9	Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 2018, 84, 722-733.	1.3	101
10	Cannabinoids, the endocannabinoid system, and pain: a review of preclinical studies. Pain, 2021, 162, S5-S25.	4.2	92
11	Activation of Type 5 Metabotropic Glutamate Receptors and Diacylglycerol Lipase-Â Initiates 2-Arachidonoylglycerol Formation and Endocannabinoid-Mediated Analgesia. Journal of Neuroscience, 2012, 32, 9457-9468.	3.6	78
12	Systematic review and meta-analysis of cannabinoids, cannabis-based medicines, and endocannabinoid system modulators tested for antinociceptive effects in animal models of injury-related or pathological persistent pain. Pain, 2021, 162, S26-S44.	4.2	75
13	A Lipid Gate for the Peripheral Control of Pain. Journal of Neuroscience, 2014, 34, 15184-15191.	3.6	56
14	Slowly Signaling G Protein–Biased CB ₂ Cannabinoid Receptor Agonist LY2828360 Suppresses Neuropathic Pain with Sustained Efficacy and Attenuates Morphine Tolerance and Dependence. Molecular Pharmacology, 2018, 93, 49-62.	2.3	56
15	Pharmacological characterization of AM1710, a putative cannabinoid CB2 agonist from the cannabilactone class: Antinociception without central nervous system side-effects. Pharmacology Biochemistry and Behavior, 2011, 98, 493-502.	2.9	55
16	CB ₁ Knockout Mice Unveil Sustained CB ₂ -Mediated Antiallodynic Effects of the Mixed CB ₁ /CB ₂ Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. Molecular Pharmacology, 2015, 88, 64-74.	2.3	54
17	Small molecule inhibitors of PSD95-nNOS protein–protein interactions as novel analgesics. Neuropharmacology, 2015, 97, 464-475.	4.1	54
18	A pro-nociceptive phenotype unmasked in mice lacking fatty-acid amide hydrolase. Molecular Pain, 2016, 12, 174480691664919.	2.1	46

#	Article	IF	Citations
19	Neonatal Chronic Hind Paw Inflammation Alters Sensitization to Intradermal Capsaicin in Adult Rats: A Behavioral and Immunocytochemical Study. Journal of Pain, 2005, 6, 798-808.	1.4	45
20	Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms. Pharmacological Research, 2010, 62, 249-258.	7.1	45
21	Cannabinoid CB2 Agonist AM1710 Differentially Suppresses Distinct Pathological Pain States and Attenuates Morphine Tolerance and Withdrawal. Molecular Pharmacology, 2019, 95, 155-168.	2.3	42
22	Positive Allosteric Modulation of CB1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Frontiers in Molecular Neuroscience, 2020, 13, 54.	2.9	42
23	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	6.4	40
24	International Association for the Study of Pain Presidential Task Force on Cannabis and Cannabinoid Analgesia: research agenda on the use of cannabinoids, cannabis, and cannabis-based medicines for pain management. Pain, 2021, 162, S117-S124.	4.2	33
25	Inflammatory and Neuropathic Nociception is Preserved in GPR55 Knockout Mice. Scientific Reports, 2017, 7, 944.	3.3	32
26	Brain-Permeant and -Impermeant Inhibitors of Fatty Acid Amide Hydrolase Synergize with the Opioid Analgesic Morphine to Suppress Chemotherapy-Induced Neuropathic Nociception Without Enhancing Effects of Morphine on Gastrointestinal Transit. Journal of Pharmacology and Experimental Therapeutics, 2018, 367, 551-563.	2.5	32
27	Cannabinoid CB ₂ Agonist GW405833 Suppresses Inflammatory and Neuropathic Pain through a CB ₁ Mechanism that is Independent of CB ₂ Receptors in Mice. Journal of Pharmacology and Experimental Therapeutics, 2017, 362, 296-305.	2.5	31
28	Small molecule inhibitors of PSD95–nNOS protein–protein interactions suppress formalin-evoked Fos protein expression and nociceptive behavior in rats. Neuroscience, 2017, 349, 303-317.	2.3	27
29	Fecal microbiota transplantation and antibiotic treatment attenuate naloxone-precipitated opioid withdrawal in morphine-dependent mice. Experimental Neurology, 2021, 343, 113787.	4.1	27
30	The cannabinoid CB2 receptor agonist LY2828360 synergizes with morphine to suppress neuropathic nociception and attenuates morphine reward and physical dependence. European Journal of Pharmacology, 2020, 886, 173544.	3.5	27
31	Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Science Translational Medicine, 2021, 13, eabh1314.	12.4	23
32	Voluntary exercise reduces both chemotherapy-induced neuropathic nociception and deficits in hippocampal cellular proliferation in a mouse model of paclitaxel-induced peripheral neuropathy. Neurobiology of Pain (Cambridge, Mass), 2019, 6, 100035.	2.5	22
33	Brain permeant and impermeant inhibitors of fatty-acid amide hydrolase suppress the development and maintenance of paclitaxel-induced neuropathic pain without producing tolerance or physical dependence in vivo and synergize with paclitaxel to reduce tumor cell line viability in vitro. Pharmacological Research, 2019, 142, 267-282.	7.1	22
34	Impact of Genetic Reduction of NMNAT2 on Chemotherapy-Induced Losses in Cell Viability In Vitro and Peripheral Neuropathy In Vivo. PLoS ONE, 2016, 11, e0147620.	2.5	21
35	Disruption of nNOS–NOS1AP protein–protein interactions suppresses neuropathic pain in mice. Pain, 2018, 159, 849-863.	4.2	17
36	A peripheral CB2 cannabinoid receptor mechanism suppresses chemotherapy-induced peripheral neuropathy: evidence from a CB2 reporter mouse. Pain, 2022, 163, 834-851.	4.2	17

#	Article	IF	CITATIONS
37	Prophylactic treatment with the tricyclic antidepressant desipramine prevents development of paclitaxel-induced neuropathic pain through activation of endogenous analgesic systems. Pharmacological Research, 2016, 114, 75-89.	7.1	16
38	NAAA-regulated lipid signaling governs the transition from acute to chronic pain. Science Advances, 2021, 7, eabi8834.	10.3	15
39	ZLc002, a putative small-molecule inhibitor of nNOS interaction with NOS1AP, suppresses inflammatory nociception and chemotherapy-induced neuropathic pain and synergizes with paclitaxel to reduce tumor cell viability. Molecular Pain, 2018, 14, 174480691880122.	2.1	13
40	Inhaled Cannabis Suppresses Chemotherapy-Induced Neuropathic Nociception by Decoupling the Raphe Nucleus: A Functional Imaging Study in Rats. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6, 479-489.	1.5	11
41	Cannabidiol has a unique effect on global brain activity: a pharmacological, functional MRI study in awake mice. Journal of Translational Medicine, 2021, 19, 220.	4.4	9
42	A limited access oral oxycodone paradigm produces physical dependence and mesocorticolimbic region-dependent increases in DeltaFosB expression without preference. Neuropharmacology, 2022, 205, 108925.	4.1	7
43	Cannabinoid CB ₂ Receptor Activation Attenuates Fentanyl-Induced Respiratory Depression. Cannabis and Cannabinoid Research, 2021, 6, 389-400.	2.9	5