Zhi-qiang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7632135/publications.pdf Version: 2024-02-01

7HLOIANC SHI

#	Article	IF	CITATIONS
1	Supercapacitor Devices Based on Graphene Materials. Journal of Physical Chemistry C, 2009, 113, 13103-13107.	3.1	2,295
2	Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. Journal of Power Sources, 2014, 272, 800-807.	7.8	242
3	Electrochemical Performance of Electrospun carbon nanofibers as free-standing and binder-free anodes for Sodium-Ion and Lithium-Ion Batteries. Electrochimica Acta, 2014, 141, 302-310.	5.2	167
4	Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. Journal of Power Sources, 2014, 252, 235-243.	7.8	147
5	Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors. Electrochimica Acta, 2016, 187, 134-142.	5.2	123
6	Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors. Electrochimica Acta, 2014, 125, 22-28.	5.2	119
7	Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor. Journal of Physics and Chemistry of Solids, 2009, 70, 1256-1260.	4.0	108
8	Spiro-(1,1′)-bipyrrolidinium tetrafluoroborate salt as high voltage electrolyte for electric double layer capacitors. Journal of Power Sources, 2014, 265, 309-316.	7.8	81
9	Facile hydrothermal treatment route of reed straw-derived hard carbon for high performance sodium ion battery. Electrochimica Acta, 2018, 291, 188-196.	5.2	80
10	SiO ₂ /Carbon Composite Microspheres with Hollow Core–Shell Structure as a Highâ€5tability Electrode for Lithiumâ€ion Batteries. ChemElectroChem, 2017, 4, 542-549.	3.4	63
11	An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion batteries. RSC Advances, 2015, 5, 101115-101120.	3.6	56
12	Pre-lithiation design and lithium ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors. Electrochimica Acta, 2015, 182, 156-164.	5.2	55
13	Nanostructured SiO2/C composites prepared via electrospinning and their electrochemical properties for lithium ion batteries. Journal of Electroanalytical Chemistry, 2015, 746, 62-67.	3.8	53
14	Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors. Electrochimica Acta, 2015, 153, 476-483.	5.2	52
15	Low-cost water caltrop shell-derived hard carbons with high initial coulombic efficiency for sodium-ion battery anodes. Journal of Alloys and Compounds, 2019, 775, 1028-1035.	5.5	52
16	Properties and sodium insertion behavior of Phenolic Resin-based hard carbon microspheres obtained by a hydrothermal method. Journal of Electroanalytical Chemistry, 2015, 755, 87-91.	3.8	48
17	Tailoring a Phenolic Resin Precursor by Facile Pre-oxidation Tactics to Realize a High-Initial-Coulombic-Efficiency Hard Carbon Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 31650-31659.	8.0	44
18	A novel supercapacitor electrolyte of spiro-(1,1')-bipyrolidinium tetrafluoroborate in acetonitrile/dibutyl carbonate mixed solvents for ultra-low temperature applications. Electrochimica Acta, 2016, 200, 106-114.	5.2	41

ZHI-QIANG SHI

#	Article	IF	CITATIONS
19	Electrospun pitch/polyacrylonitrile composite carbon nanofibers as high performance anodes for lithium-ion batteries. Materials Letters, 2015, 159, 341-344.	2.6	36
20	Free-standing, welded mesoporous carbon nanofibers as anode for high-rate performance Li-ion batteries. Journal of Electroanalytical Chemistry, 2017, 795, 26-31.	3.8	36
21	Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches. New Carbon Materials, 2010, 25, 285-290.	6.1	35
22	Hard carbon microspheres derived from resorcinol formaldehyde resin as high-performance anode materials for sodium-ion battery. Ionics, 2020, 26, 4523-4532.	2.4	34
23	Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy and Environment, 2021, 6, 220-228.	8.7	34
24	Structure and surface elemental state analysis of polyimide resin film after carbonization and graphitization. Journal of Applied Polymer Science, 2008, 108, 1852-1856.	2.6	32
25	Solution blown aligned carbon nanofiber yarn as supercapacitor electrode. Journal of Materials Science: Materials in Electronics, 2013, 24, 4769-4773.	2.2	29
26	Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance. Journal of Electroanalytical Chemistry, 2015, 747, 20-28.	3.8	29
27	Excellent low temperature performance electrolyte of spiro-(1,1′)-bipyrrolidinium tetrafluoroborate by tunable mixtures solvents for electric double layer capacitor. Electrochimica Acta, 2015, 174, 215-220.	5.2	28
28	Electrochemical performance of MCMB/(AC+LiFePO4) lithium-ion capacitors. Science Bulletin, 2013, 58, 689-695.	1.7	27
29	Water-based synthesis of spiro-(1,1′)-bipyrrolidinium bis(fluorosulfonyl)imide electrolyte for high-voltage and low-temperature supercapacitor. Chemical Engineering Journal, 2019, 373, 1012-1019.	12.7	27
30	Three-dimensional Si/hard-carbon/graphene network as high-performance anode material for lithium ion batteries. Journal of Materials Science, 2018, 53, 2149-2160.	3.7	26
31	Graphene quantum dots as a novel conductive additive to improve the capacitive performance for supercapacitors. Journal of Electroanalytical Chemistry, 2018, 828, 1-10.	3.8	26
32	A novel electrolyte used in high working voltage application for electrical double-layer capacitor using spiro-(1,1′)-bipyrrolidinium tetrafluoroborate in mixtures solvents. Electrochimica Acta, 2015, 182, 1166-1174.	5.2	23
33	High-performance sodium-ion storage: multi-channel carbon nanofiber freestanding anode contrived via ingenious solvent-induced phase separation. Journal of Materials Chemistry A, 2020, 8, 19898-19907.	10.3	23
34	Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior. Chemical Engineering Journal, 2021, 425, 131656.	12.7	22
35	In-situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell. Chemical Engineering Journal, 2022, 432, 133257.	12.7	20
36	Influence of carbon structure on performance of electrode material for electric double-layer capacitor. Journal of Physics and Chemistry of Solids, 2008, 69, 16-22.	4.0	19

ZHI-QIANG SHI

#	Article	IF	CITATIONS
37	The structure and electrochemical properties of carbonized polyacrylonitrile microspheres. Solid State Ionics, 2014, 261, 5-10.	2.7	19
38	Effect of reduction heat treatment in H2 atmosphere on structure and electrochemical properties of activated carbon. Journal of Solid State Electrochemistry, 2015, 19, 1437-1446.	2.5	17
39	Electrochemical behavior of lithium ion capacitor under low temperature. Journal of Electroanalytical Chemistry, 2018, 817, 195-201.	3.8	16
40	Li ₄ Ti ₅ O ₁₂ /hollow graphitized nano-carbon composites as anode materials for lithium ion battery. RSC Advances, 2016, 6, 26406-26411.	3.6	14
41	Boosting the High Capacitance-Controlled Capacity of Hard Carbon by Using Surface Oxygen Functional Groups for Fast and Stable Sodium Storage. ACS Applied Energy Materials, 2021, 4, 11436-11446.	5.1	14
42	Phenolic formaldehyde resin/graphene composites as lithium-ion batteries anode. Materials Letters, 2016, 170, 217-220.	2.6	13
43	One step production of in situ nitrogen doped mesoporous carbon confined sulfur for lithium–sulfur batteries. RSC Advances, 2015, 5, 31629-31636.	3.6	12
44	Designing and preparing a 3D "overpass―hierarchical porous carbon membranes free-standing anode for sodium ion battery. Chemical Engineering Journal, 2022, 448, 137628.	12.7	12
45	Mace-like carbon fibers@Fe3O4@carbon composites as anode materials for lithium-ion batteries. Ionics, 2020, 26, 5923-5934.	2.4	9
46	N-Propyl-N-Methylpyrrolidinium Difluoro(oxalato)borate as a Novel Electrolyte for High-Voltage Supercapacitor. Frontiers in Chemistry, 2019, 7, 664.	3.6	8
47	Sycamore fruit seedâ€based hard carbon anode material with high cycle stability for sodiumâ€ion battery. Journal of Materials Science: Materials in Electronics, 2021, 32, 5645-5654.	2.2	8
48	Facile cyclic ammonium salt with the smallest size for high performance electric double layer capacitors. Chinese Chemical Letters, 2019, 30, 1269-1272.	9.0	5
49	Discarded Polyimide Film-Derived Hierarchical Porous Carbon Boosting the Energy Density of Supercapacitors in Na ₂ SO ₄ and Spiro-(1,1′)-bipyrrolidinium Tetrafluoroborate Electrolytes. ACS Applied Energy Materials, 2022, 5, 1205-1217.	5.1	5
50	Application of corncob-based activated carbon as electrode material for electric double-layer capacitors. Transactions of Tianjin University, 2012, 18, 217-223.	6.4	2
51	Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study. Chinese Physics B, 2016, 25, 066102.	1.4	2
52	Synthesis of α-Fe2O3 double-layer hollow spheres with carbon coating using carbonaceous sphere templates for lithium ion battery anodes. Journal of Solid State Electrochemistry, 2021, 25, 267-278.	2.5	1
53	Green and efficient synthesis of LiNi0.8Co0.1Mn0.1O2 cathode material with outstanding electrochemical performance by spray drying method. lonics, 2021, 27, 3231.	2.4	1
54	Synthesis and Characterisation of 4-Aminophthalimido-N-Alkyl-Calix[4]Azacrown Derivatives. Journal of Chemical Research, 2012, 36, 216-217.	1.3	0

#	Article	IF	CITATIONS
55	High thermal stability multilayered electrolyte complexes via layer-by-layer for long-life lithium-sulfur battery. Ionics, 2020, 26, 5481-5489.	2.4	0