
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631057/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Myeloperoxidase-generated oxidants and atherosclerosis. Free Radical Biology and Medicine, 2000, 28, 1717-1725.	2.9	541
2	A Tale of Two Controversies. Journal of Biological Chemistry, 2002, 277, 17415-17427.	3.4	452
3	Nitric Oxide Is a Physiological Substrate for Mammalian Peroxidases. Journal of Biological Chemistry, 2000, 275, 37524-37532.	3.4	342
4	Formation of Nitric Oxide–Derived Oxidants by Myeloperoxidase in Monocytes. Circulation Research, 1999, 85, 950-958.	4.5	214
5	Reactive oxygen species and oocyte aging: Role of superoxide, hydrogen peroxide, and hypochlorous acid. Free Radical Biology and Medicine, 2008, 44, 1295-1304.	2.9	186
6	Neuronal Nitric Oxide Synthase Self-inactivates by Forming a Ferrous-Nitrosyl Complex during Aerobic Catalysis. Journal of Biological Chemistry, 1995, 270, 22997-23006.	3.4	181
7	Nitric Oxide Modulates the Catalytic Activity of Myeloperoxidase. Journal of Biological Chemistry, 2000, 275, 5425-5430.	3.4	165
8	The Ferrous-dioxy Complex of Neuronal Nitric Oxide Synthase. Journal of Biological Chemistry, 1997, 272, 17349-17353.	3.4	136
9	Characterization of the Reductase Domain of Rat Neuronal Nitric Oxide Synthase Generated in the Methylotrophic Yeast Pichia pastoris. Journal of Biological Chemistry, 1996, 271, 20594-20602.	3.4	132
10	Stopped-Flow Analysis of CO and NO Binding to Inducible Nitric Oxide Synthase. Biochemistry, 1998, 37, 3777-3786.	2.5	120
11	Nitric Oxide Binding to the Heme of Neuronal Nitric-oxide Synthase Links Its Activity to Changes in Oxygen Tension. Journal of Biological Chemistry, 1996, 271, 32515-32518.	3.4	118
12	Cyclophosphamide and acrolein induced oxidative stress leading to deterioration of metaphase II mouse oocyte quality. Free Radical Biology and Medicine, 2017, 110, 11-18.	2.9	111
13	Subunit Dissociation and Unfolding of Macrophage NO Synthase: Relationship between Enzyme Structure, Prosthetic Group Binding, and Catalytic Function. Biochemistry, 1995, 34, 11167-11175.	2.5	108
14	Electron Transfer, Oxygen Binding, and Nitric Oxide Feedback Inhibition in Endothelial Nitric-oxide Synthase. Journal of Biological Chemistry, 2000, 275, 17349-17357.	3.4	103
15	High-Level Expression of Mouse Inducible Nitric Oxide Synthase inEscherichia coliRequires Coexpression with Calmodulin. Biochemical and Biophysical Research Communications, 1996, 222, 439-444.	2.1	98
16	Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertility and Sterility, 2014, 102, 151-159.e5.	1.0	96
17	Melatonin Is a Potent Inhibitor for Myeloperoxidase. Biochemistry, 2008, 47, 2668-2677.	2.5	92
18	Heme Iron Reduction and Catalysis by a Nitric Oxide Synthase Heterodimer Containing One Reductase and Two Oxygenase Domains. Journal of Biological Chemistry, 1996, 271, 7309-7312.	3.4	83

#	Article	IF	CITATIONS
19	Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radical Biology and Medicine, 2010, 49, 205-213.	2.9	82
20	Nitric Oxide Delays Oocyte Aging. Biochemistry, 2005, 44, 11361-11368.	2.5	77
21	Role of Reductase Domain Cluster 1 Acidic Residues in Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry, 1999, 274, 22313-22320.	3.4	76
22	Peroxidases Inhibit Nitric Oxide (NO) Dependent Bronchodilation:Â Development of a Model Describing NOâ^'Peroxidase Interactionsâ€. Biochemistry, 2001, 40, 11866-11875.	2.5	75
23	Myeloperoxidase up-regulates the catalytic activity of inducible nitric oxide synthase by preventing nitric oxide feedback inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14766-14771.	7.1	75
24	Regulation of Inducible Nitric Oxide Synthase by Self-Generated NOâ€. Biochemistry, 2001, 40, 6876-6881.	2.5	71
25	Analysis of Neuronal NO Synthase under Single-Turnover Conditions:Â Conversion ofNï‰-Hydroxyarginine to Nitric Oxide and Citrullineâ€. Biochemistry, 1997, 36, 10811-10816.	2.5	70
26	Reaction of hemoglobin with HOCI: Mechanism of heme destruction and free iron release. Free Radical Biology and Medicine, 2011, 51, 374-386.	2.9	68
27	Neuronal Nitric-oxide Synthase Interaction with Calmodulin-Troponin C Chimeras. Journal of Biological Chemistry, 1998, 273, 5451-5454.	3.4	62
28	The Defensive Role of Cumulus Cells Against Reactive Oxygen Species Insult in Metaphase II Mouse Oocytes. Reproductive Sciences, 2016, 23, 498-507.	2.5	57
29	Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radical Biology and Medicine, 2008, 45, 530-536.	2.9	52
30	Thiocyanate Modulates the Catalytic Activity of Mammalian Peroxidases. Journal of Biological Chemistry, 2005, 280, 26129-26136.	3.4	51
31	Myeloperoxidase serves as a redox switch that regulates apoptosis in epithelial ovarian cancer. Gynecologic Oncology, 2010, 116, 276-281.	1.4	51
32	A Multiple-Hit Hypothesis Involving Reactive Oxygen Species and Myeloperoxidase Explains Clinical Deterioration and Fatality in COVID-19. International Journal of Biological Sciences, 2021, 17, 62-72.	6.4	51
33	Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radical Biology and Medicine, 2013, 63, 90-98.	2.9	45
34	Interrogation of Heme Pocket Environment of Mammalian Peroxidases with Diatomic Ligands. Biochemistry, 2001, 40, 10747-10755.	2.5	44
35	Dichloroacetate Induces Apoptosis of Epithelial Ovarian Cancer Cells Through a Mechanism Involving Modulation of Oxidative Stress. Reproductive Sciences, 2011, 18, 1253-1261.	2.5	44
36	The reaction of HOCl and cyanocobalamin: Corrin destruction and the liberation of cyanogen chloride. Free Radical Biology and Medicine, 2012, 52, 616-625.	2.9	40

#	Article	IF	CITATIONS
37	EPR Spectroscopic Characterization of Neuronal NO Synthase. Biochemistry, 1996, 35, 2804-2810.	2.5	39
38	Nitric oxide extends the oocyte temporal window for optimal fertilization. Free Radical Biology and Medicine, 2008, 45, 453-459.	2.9	38
39	Mechanism of hypochlorous acid-mediated heme destruction and free iron release. Free Radical Biology and Medicine, 2011, 51, 364-373.	2.9	38
40	Melatonin prevents hypochlorous acidâ€induced alterations in microtubule and chromosomal structure in metaphaseâ€il mouse oocytes. Journal of Pineal Research, 2012, 53, 122-128.	7.4	38
41	Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radical Biology and Medicine, 2013, 58, 154-159.	2.9	38
42	Activation of the cGMP Signaling Pathway Is Essential in Delaying Oocyte Aging in Diabetes Mellitusâ€,‡. Biochemistry, 2006, 45, 11366-11378.	2.5	37
43	Modulation of redox signaling promotes apoptosis in epithelial ovarian cancer cells. Gynecologic Oncology, 2011, 122, 418-423.	1.4	36
44	The Role of Oxidative Stress in the Development of Cisplatin Resistance in Epithelial Ovarian Cancer. Reproductive Sciences, 2014, 21, 503-508.	2.5	35
45	Hypochlorous Acid-Induced Heme Degradation from Lactoperoxidase as a Novel Mechanism of Free Iron Release and Tissue Injury in Inflammatory Diseases. PLoS ONE, 2011, 6, e27641.	2.5	34
46	<i>S</i> â€nitrosylation of caspaseâ€3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair and Regeneration, 2009, 17, 224-229.	3.0	31
47	IL-6 and Mouse Oocyte Spindle. PLoS ONE, 2012, 7, e35535.	2.5	30
48	Analysis of the mechanism by which tryptophan analogs inhibit human myeloperoxidase. Free Radical Biology and Medicine, 2009, 47, 1005-1013.	2.9	29
49	Myeloperoxidase and free iron levels: Potential biomarkers for early detection and prognosis of ovarian cancer. Cancer Biomarkers, 2012, 10, 267-275.	1.7	29
50	Galactose and its Metabolites Deteriorate Metaphase II Mouse Oocyte Quality and Subsequent Embryo Development by Disrupting the Spindle Structure. Scientific Reports, 2017, 7, 231.	3.3	29
51	Mechanism-based inactivation of a bacterial phosphotriesterase by an alkynyl phosphate ester. Journal of the American Chemical Society, 1991, 113, 8560-8561.	13.7	28
52	Stopped-Flow Analysis of Substrate Binding to Neuronal Nitric Oxide Synthaseâ€. Biochemistry, 1999, 38, 12446-12451.	2.5	28
53	Melatonin interferes with COVID-19 at several distinct ROS-related steps. Journal of Inorganic Biochemistry, 2021, 223, 111546.	3.5	27
54	Analysis of the mechanism by which melatonin inhibits human eosinophil peroxidase. British Journal of Pharmacology, 2008, 154, 1308-1317.	5.4	26

#	Article	IF	CITATIONS
55	Potential role of tryptophan and chloride in the inhibition of human myeloperoxidase. Free Radical Biology and Medicine, 2008, 44, 1570-1577.	2.9	26
56	Myeloperoxidase Metabolizes Thiocyanate in a Reaction Driven by Nitric Oxide. Biochemistry, 2006, 45, 1255-1262.	2.5	25
57	Kinetic Evidence Supports the Existence of Two Halide Binding Sites that Have a Distinct Impact on the Heme Iron Microenvironment in Myeloperoxidaseâ€. Biochemistry, 2007, 46, 398-405.	2.5	25
58	Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Free Radical Biology and Medicine, 2009, 47, 431-439.	2.9	25
59	Nicotinamide Adenine Dinucleotide Phosphate Oxidase Is Differentially Regulated in Normal Myometrium Versus Leiomyoma. Reproductive Sciences, 2014, 21, 1145-1152.	2.5	24
60	The Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality. PLoS ONE, 2016, 11, e0151160.	2.5	24
61	Nitric oxide synthase isoforms expression in fibroblasts isolated from human normal peritoneum and adhesion tissues. Fertility and Sterility, 2008, 90, 769-774.	1.0	23
62	Melatonin prevents hypochlorous acidâ€mediated cyanocobalamin destruction and cyanogen chloride generation. Journal of Pineal Research, 2018, 64, e12463.	7.4	23
63	Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure inÂvitro. Fertility and Sterility, 2013, 100, 578-584.e1.	1.0	22
64	Glyphosate Induces Metaphase II Oocyte Deterioration and Embryo Damage by Zinc Depletion and Overproduction of Reactive Oxygen Species. Toxicology, 2020, 439, 152466.	4.2	22
65	Diffused Intra-Oocyte Hydrogen Peroxide Activates Myeloperoxidase and Deteriorates Oocyte Quality. PLoS ONE, 2015, 10, e0132388.	2.5	22
66	Interaction of Bacterial Luciferase with 8-Substituted Flavin Mononucleotide Derivatives. Journal of Biological Chemistry, 1996, 271, 104-110.	3.4	21
67	Melatonin attenuates hypochlorous acidâ€mediated heme destruction, free iron release, and protein aggregation in hemoglobin. Journal of Pineal Research, 2012, 53, 198-205.	7.4	21
68	Hypoxia regulates iNOS expression in human normal peritoneal and adhesion fibroblasts through nuclear factor kappa B activation mechanism. Fertility and Sterility, 2009, 91, 616-621.	1.0	19
69	The role of myeloperoxidase in the pathogenesis of postoperative adhesions. Wound Repair and Regeneration, 2009, 17, 531-539.	3.0	17
70	Catalase prevents myeloperoxidase self-destruction in response to oxidative stress. Journal of Inorganic Biochemistry, 2019, 197, 110706.	3.5	17
71	High Dissociation Rate Constant of Ferrous-Dioxy Complex Linked to the Catalase-like Activity in Lactoperoxidase. Journal of Biological Chemistry, 2004, 279, 39465-39470.	3.4	16
72	Direct Real-Time Measurement of Intra-Oocyte Nitric Oxide Concentration In Vivo. PLoS ONE, 2014, 9, e98720.	2.5	16

#	Article	IF	CITATIONS
73	Control of Electron Transfer in Neuronal Nitric Oxide Synthase by Calmodulin, Substrate, Substrate Analogs, and Nitric Oxide. Advances in Pharmacology, 1995, 34, 207-213.	2.0	15
74	A Novel Multistep Mechanism for Oxygen Binding to Ferrous Hemoproteins:Â Rapid Kinetic Analysis of Ferrous-Dioxy Myeloperoxidase (Compound III) Formationâ€. Biochemistry, 2004, 43, 11589-11595.	2.5	15
75	Lycopene, a powerful antioxidant, significantly reduces the development of the adhesion phenotype. Systems Biology in Reproductive Medicine, 2014, 60, 14-20.	2.1	15
76	Peroxynitrite deteriorates oocyte quality through disassembly of microtubule organizing centers. Free Radical Biology and Medicine, 2016, 91, 275-280.	2.9	15
77	Mesna (2-mercaptoethane sodium sulfonate) functions as a regulator of myeloperoxidase. Free Radical Biology and Medicine, 2017, 110, 54-62.	2.9	15
78	Acrolein, a commonly found environmental toxin, causes oocyte mitochondrial dysfunction and negatively affects embryo development. Free Radical Research, 2018, 52, 929-938.	3.3	14
79	Hypochlorous acid reversibly inhibits caspase-3: a potential regulator of apoptosis. Free Radical Research, 2020, 54, 43-56.	3.3	14
80	Kinetic Studies on the Reaction between Dicyanocobinamide and Hypochlorous Acid. PLoS ONE, 2014, 9, e110595.	2.5	14
81	Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. Journal of Inorganic Biochemistry, 2014, 140, 245-254.	3.5	13
82	Melatonin Prevents Myeloperoxidase Heme Destruction and the Generation of Free Iron Mediated by Self-Generated Hypochlorous Acid. PLoS ONE, 2015, 10, e0120737.	2.5	13
83	Potential Role of Zinc in the COVID-19 Disease Process and its Probable Impact on Reproduction. Reproductive Sciences, 2022, 29, 1-6.	2.5	12
84	Exposure to polychlorinated biphenyls enhances lipid peroxidation in human normal peritoneal and adhesion fibroblasts: A potential role for myeloperoxidase. Free Radical Biology and Medicine, 2010, 48, 845-850.	2.9	11
85	Melatonin Can Mediate Its Vascular Protective Effect by Modulating Free Iron Level by Inhibiting Hypochlorous Acid–Mediated Hemoprotein Heme Destruction. Hypertension, 2011, 57, e22; author reply e23.	2.7	11
86	Measurement of oxygen and nitric oxide levels in vitro and in vivo: Relationship to postoperative adhesions. Fertility and Sterility, 2005, 84, 235-238.	1.0	10
87	The Potential Role of Nitric Oxide in Substrate Switching in Eosinophil Peroxidaseâ€. Biochemistry, 2007, 46, 406-415.	2.5	10
88	Dimercapto-1-propanesulfonic acid (DMPS) induces metaphase II mouse oocyte deterioration. Free Radical Biology and Medicine, 2017, 112, 445-451.	2.9	9
89	Computational analysis of nitric oxide biotransport to red blood cell in the presence of free hemoglobin and NO donor. Microvascular Research, 2014, 95, 15-25.	2.5	5
90	Hypochlorous acid facilitates inducible nitric oxide synthase subunit dissociation: The link between heme destruction, disturbance of the zinc-tetrathiolate center, and the prevention by melatonin. Nitric Oxide - Biology and Chemistry, 2022, 124, 32-38.	2.7	5

#	Article	IF	CITATIONS
91	Toxicology in Reproductive Endocrinology. Clinics in Laboratory Medicine, 2016, 36, 709-720.	1.4	2

The inhibition of lactoperoxidase catalytic activity through mesna (2-mercaptoethane sodium) Tj ETQq0 0 0 rgBT /Qyerlock 10 Tf 50 702

93	A novel theory implicating hypochlorous acid as the primary generator of angiogenesis, infertility, and free iron in endometriosis. F&S Reviews, 2022, , .	1.3	2
94	Zinc Homeostasis, Reactive Oxygen Species Imbalance and Bisphenol-A Exposure in the Preimplantation Mouse Embryo: a possible adverse outcome pathway. Advances in Redox Research, 2022, 4, 100032.	2.1	1
95	Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode. Methods in Molecular Biology, 2018, 1747, 13-21.	0.9	0
96	Potent antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. FASEB Journal, 2010, 24, 92.1.	0.5	0