
Rajesh Kumar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic Diversity of Nitrogen-Fixing and Plant Growth Promoting Pseudomonas Species Isolated from Sugarcane Rhizosphere. Frontiers in Microbiology, 2017, 8, 1268.	3.5	116
2	Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp BMC Plant Biology, 2020, 20, 220.	3.6	80
3	The Impact of Silicon on Photosynthetic and Biochemical Responses of Sugarcane under Different Soil Moisture Levels. Silicon, 2020, 12, 1355-1367.	3.3	68
4	Mitigating Climate Change for Sugarcane Improvement: Role of Silicon in Alleviating Abiotic Stresses. Sugar Tech, 2020, 22, 741-749.	1.8	67
5	Isolation and characterization of siderophore producing antagonistic rhizobacteria against <i>Rhizoctonia solani</i> . Journal of Basic Microbiology, 2014, 54, 585-597.	3.3	66
6	Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium With Biocontrol and Stress Tolerance Properties, Isolated From Sugarcane Root. Frontiers in Microbiology, 2020, 11, 580081.	3.5	63
7	Diversity and antagonistic potential of <i>Bacillus</i> spp. associated to the rhizosphere of tomato for the management of <i>Rhizoctonia solani</i> . Biocontrol Science and Technology, 2012, 22, 203-217.	1.3	62
8	Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regulation, 2014, 73, 91-101.	3.4	62
9	Characterization of Mycolytic Enzymes of Bacillus Strains and Their Bio-Protection Role Against Rhizoctonia solani in Tomato. Current Microbiology, 2012, 65, 330-336.	2.2	57
10	Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. Journal of Soils and Sediments, 2019, 19, 1911-1927.	3.0	56
11	Mechanistic Insights and Potential Use of Siderophores Producing Microbes in Rhizosphere for Mitigation of Stress in Plants Grown in Degraded Land. Frontiers in Microbiology, 0, 13, .	3.5	54
12	Plant defense activation and management of tomato root rot by a chitin-fortified Trichoderma/Hypocrea formulation. Phytoparasitica, 2011, 39, 471-481.	1.2	53
13	Whole Genome Analysis of Sugarcane Root-Associated Endophyte Pseudomonas aeruginosa B18—A Plant Growth-Promoting Bacterium With Antagonistic Potential Against Sporisorium scitamineum. Frontiers in Microbiology, 2021, 12, 628376.	3.5	53
14	Intercropping in Sugarcane Cultivation Influenced the Soil Properties and Enhanced the Diversity of Vital Diazotrophic Bacteria. Sugar Tech, 2017, 19, 136-147.	1.8	47
15	Unlocking the strength of plant growth promoting <i>Pseudomonas</i> in improving crop productivity in normal and challenging environments: a review. Journal of Plant Interactions, 2022, 17, 220-238.	2.1	47
16	Optimization of media components for chitinase production by chickpea rhizosphere associated <i>Lysinibacillus fusiformis</i> B M18. Journal of Basic Microbiology, 2013, 53, 451-460.	3.3	42
17	Characterization of antagonisticâ€potential of two <i>Bacillus</i> strains and their biocontrol activity against <i>Rhizoctonia solani</i> in tomato. Journal of Basic Microbiology, 2015, 55, 82-90.	3.3	40
18	Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Frontiers in Microbiology, 2020, 11, 600417.	3.5	39

Rajesh Kumar Singh

#	Article	IF	CITATIONS
19	Nanofertilizer Possibilities for Healthy Soil, Water, and Food in Future: An Overview. Frontiers in Plant Science, 2022, 13, .	3.6	35
20	Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS ONE, 2020, 15, e0231206.	2.5	33
21	Plant-PGPR interaction study of plant growth-promoting diazotrophs <i>Kosakonia radicincitans</i> BA1 and <i>Stenotrophomonas maltophilia</i> COA2 to enhance growth and stress-related gene expression in <i>Saccharum</i> spp Journal of Plant Interactions, 2020, 15, 427-445.	2.1	32
22	Co-inoculation of different antagonists can enhance the biocontrol activity against Rhizoctonia solani in tomato. Antonie Van Leeuwenhoek, 2019, 112, 1633-1644.	1.7	30
23	Interactive Role of Silicon and Plant–Rhizobacteria Mitigating Abiotic Stresses: A New Approach for Sustainable Agriculture and Climate Change. Plants, 2020, 9, 1055.	3.5	30
24	Identification and Efficiency of a Nitrogen-fixing Endophytic Actinobacterial Strain from Sugarcane. Sugar Tech, 2017, 19, 492-500.	1.8	29
25	Silicon Supply Improves Leaf Gas Exchange, Antioxidant Defense System and Growth in Saccharum officinarum Responsive to Water Limitation. Plants, 2020, 9, 1032.	3.5	29
26	Investigation of Defensive Role of Silicon during Drought Stress Induced by Irrigation Capacity in Sugarcane: Physiological and Biochemical Characteristics. ACS Omega, 2021, 6, 19811-19821.	3.5	28
27	Proteomic Analysis of the Resistance Mechanisms in Sugarcane during Sporisorium scitamineum Infection. International Journal of Molecular Sciences, 2019, 20, 569.	4.1	27
28	Impact of Sugarcane–Legume Intercropping on Diazotrophic Microbiome. Sugar Tech, 2020, 22, 52-64.	1.8	26
29	Assessment of Diazotrophic Proteobacteria in Sugarcane Rhizosphere When Intercropped With Legumes (Peanut and Soybean) in the Field. Frontiers in Microbiology, 2020, 11, 1814.	3.5	26
30	Unraveling Nitrogen Fixing Potential of Endophytic Diazotrophs of Different Saccharum Species for Sustainable Sugarcane Growth. International Journal of Molecular Sciences, 2022, 23, 6242.	4.1	25
31	Insights into the Bacterial and Nitric Oxide-Induced Salt Tolerance in Sugarcane and Their Growth-Promoting Abilities. Microorganisms, 2021, 9, 2203.	3.6	23
32	Studies on Exo-Chitinase Production from Trichoderma asperellum UTP-16 and Its Characterization. Indian Journal of Microbiology, 2012, 52, 388-395.	2.7	21
33	Root-Derived Endophytic Diazotrophic Bacteria Pantoea cypripedii AF1 and Kosakonia arachidis EF1 Promote Nitrogen Assimilation and Growth in Sugarcane. Frontiers in Microbiology, 2021, 12, 774707.	3.5	17
34	Developing mathematical model for diurnal dynamics of photosynthesis in <i>Saccharum officinarum</i> responsive to different irrigation and silicon application. PeerJ, 2020, 8, e10154.	2.0	16
35	Beneficial Linkages of Endophytic Burkholderia anthina MYSP113 Towards Sugarcane Growth Promotion. Sugar Tech, 2019, 21, 737-748.	1.8	12
36	Physiological and Molecular Analysis of Sugarcane (Varieties—F134 and NCo310) During Sporisorium scitamineum Interaction. Sugar Tech, 2019, 21, 631-644.	1.8	12

Rajesh Kumar Singh

#	Article	IF	CITATIONS
37	Sugarcane-Legume Intercropping Can Enrich the Soil Microbiome and Plant Growth. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	12
38	Methods for Estimation of Nitrogen Components in Plants and Microorganisms. Methods in Molecular Biology, 2020, 2057, 103-112.	0.9	12
39	Soil–Plant–Microbe Interactions: Use of Nitrogen-Fixing Bacteria for Plant Growth and Development in Sugarcane. , 2017, , 35-59.		11
40	Comparative analysis of protein and differential responses of defense-related gene and enzyme activity reveals the long-term molecular responses of sugarcane inoculated with <i>Sporisorium scitamineum</i> . Journal of Plant Interactions, 2021, 16, 12-29.	2.1	10
41	Comparative transcriptome analysis of two sugarcane varieties in response to diazotrophic plant growth promoting endophyte <i>Enterobacter roggenkampii</i> ED5. Journal of Plant Interactions, 2022, 17, 75-84.	2.1	10
42	Identification and characterization of ethanol utilizing fungal flora of oil refinery contaminated soil. World Journal of Microbiology and Biotechnology, 2014, 30, 705-714.	3.6	9
43	Plant and soil-associated biofilm-forming bacteria: Their role in green agriculture. , 2020, , 151-164.		8
44	Differential Protein Expression Analysis of Two Sugarcane Varieties in Response to Diazotrophic Plant Growth-Promoting Endophyte Enterobacter roggenkampii ED5. Frontiers in Plant Science, 2021, 12, 727741.	3.6	8
45	High-Throughput Sequencing-Based Analysis of Rhizosphere and Diazotrophic Bacterial Diversity Among Wild Progenitor and Closely Related Species of Sugarcane (Saccharum spp. Inter-Specific) Tj ETQq1 1 ().78 4 83d 4 rg	gBT\$Overlock
46	Microbial biofilms: Development, structure, and their social assemblage for beneficial applications. , 2020, , 125-138.		7
47	Biofilm: A microbial assemblage on the surface—A boon or bane?. , 2020, , 139-150.		4
48	Nutrient Competition Mediated Antagonism of Microbes Against Rhizoctonia solani. Notulae Scientia Biologicae, 2018, 10, 392-399.	0.4	3
49	Optimization of Media Components for Production of α-L-rhamnosidase from Clavispora lusitaniae KF633446. International Journal of Current Microbiology and Applied Sciences, 2018, 7, 2947-2959.	0.1	3
50	Plant Microbiomes: Understanding the Aboveground Benefits. , 2020, , 51-80.		2
51	Sugarcane microbiome: role in sustainable production. , 2021, , 225-242.		2
52	Plant Small RNAs: Big Players in Biotic Stress Responses. Microorganisms for Sustainability, 2019, , 217-239.	0.7	2
53	Soil: Microbial Cell Factory for Assortment with Beneficial Role in Agriculture. , 2019, , 63-92.		2
54	Yeast α-L-Rhamnosidase: Sources, Properties, and Industrial Applications. SDRP Journal of Food Science & Technology, 2021, 6, 313-324.	0.2	1

#	Article	IF	CITATIONS
55	Plant Growth Promoting Endophytic Bacteria for management of stresses in cereal crop productions. Journal of Natural Resource Conservation and Management, 2021, 2, 32.	0.3	0