List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762973/publications.pdf Version: 2024-02-01

LINC FENC

#	Article	IF	CITATIONS
1	Anisotropic elastic and thermal properties of the double perovskite slab–rock salt layer Ln2SrAl2O7 (Ln=La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Materialia, 2012, 60, 3380-3392.	7.9	227
2	Boosting the Thermoelectric Performance of (Na,K)-Codoped Polycrystalline SnSe by Synergistic Tailoring of the Band Structure and Atomic-Scale Defect Phonon Scattering. Journal of the American Chemical Society, 2017, 139, 9714-9720.	13.7	168
3	Effective Masses and Electronic and Optical Properties of Nontoxic MASnX ₃ (X = Cl, Br,) Tj ETQq1 I Physical Chemistry C, 2014, 118, 19655-19660.	1 0.784314 3.1	ł rgBT /Over 165
4	Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials. Scripta Materialia, 2017, 126, 24-28.	5.2	144
5	Progress in ceramic materials and structure design toward advanced thermal barrier coatings. Journal of Advanced Ceramics, 2022, 11, 985-1068.	17.4	135
6	A chiral switchable photovoltaic ferroelectric 1D perovskite. Science Advances, 2020, 6, eaay4213.	10.3	119
7	Highly Enhanced Thermoelectric Properties of Bi/Bi ₂ S ₃ Nanocomposites. ACS Applied Materials & Interfaces, 2017, 9, 4828-4834.	8.0	107
8	Synthesis and thermophysical properties of RETa ₃ O ₉ (REÂ=ÂCe, Nd, Sm, Eu, Gd,) Tj E 1266-1278.	[Qq0 0 0 rş 3.8	gBT /Overloc 93
9	Ultralow Thermal Conductivity and Ultrahigh Thermal Expansion of Single-Crystal Organic–Inorganic Hybrid Perovskite CH ₃ NH ₃ PbX ₃ (X = Cl, Br, I). Journal of Physical Chemistry C, 2018, 122, 15973-15978.	3.1	93
10	Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nature Communications, 2019, 10, 4145.	12.8	93
11	Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability. Nature Communications, 2020, 11, 151.	12.8	92
12	Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO ₄ ceramics. Journal of the American Ceramic Society, 2019, 102, 4809-4821.	3.8	88
13	Thermal conductivity of ytterbia-stabilized zirconia. Scripta Materialia, 2012, 66, 41-44.	5.2	80
14	First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Physical Review B, 2014, 90, .	3.2	80
15	Enhanced thermoelectric properties of bismuth telluride bulk achieved by telluride-spilling during the spark plasma sintering process. Scripta Materialia, 2018, 143, 90-93.	5.2	77
16	Tailoring the anisotropic mechanical properties of hexagonal M7X3 (M=Fe, Cr, W, Mo; X=C, B) by multialloying. Acta Materialia, 2019, 169, 193-208.	7.9	74
17	Multipoint Defect Synergy Realizing the Excellent Thermoelectric Performance of nâ€Type Polycrystalline SnSe via Re Doping. Advanced Functional Materials, 2019, 29, 1902893.	14.9	73
18	High-entropy perovskite RETa3O9 ceramics for high-temperature environmental/thermal barrier coatings. Journal of Advanced Ceramics, 2022, 11, 556-569.	17.4	69

#	Article	IF	CITATIONS
19	Potential thermal barrier coating materials: <scp>RE</scp> ₃ NbO ₇ (<scp>RE</scp> =La,ÂNd, Sm, Eu, Gd, Dy) ceramics. Journal of the American Ceramic Society, 2018, 101, 4503-4508.	3.8	66
20	Microstructure and thermal properties of a promising thermal barrier coating: YTaO4. Ceramics International, 2016, 42, 13876-13881.	4.8	64
21	Electronic structures mechanical and thermal properties of V–C binary compounds. RSC Advances, 2014, 4, 44959-44971.	3.6	62
22	Mechanical and Optical Properties of Cs ₄ BX ₆ (B = Pb, Sn; X = Cl, Br, I) Zero-Dimension Perovskites. Journal of Physical Chemistry C, 2017, 121, 27053-27058.	3.1	61
23	The stability, electronic structure, elastic and metallic properties of manganese nitrides. RSC Advances, 2015, 5, 1620-1627.	3.6	59
24	Simultaneous enhancement of thermoelectric performance and mechanical properties in Bi2Te3 via Ru compositing. Chemical Engineering Journal, 2021, 407, 126407.	12.7	59
25	Enhanced Photocatalytic Activity in Electrospun Bismuth Vanadate Nanofibers with Phase Junction. ACS Applied Materials & Interfaces, 2015, 7, 9638-9644.	8.0	55
26	First principles study the stability, mechanical and electronic properties of manganese carbides. Computational Materials Science, 2014, 87, 19-25.	3.0	53
27	Elastic properties and electronic structures of CrxBy as superhard compounds. Journal of Alloys and Compounds, 2014, 610, 684-694.	5.5	49
28	Highâ€entropy ferroelastic rareâ€earth tantalite ceramic: (Y _{0.2} Ce _{0.2} Sm _{0.2} Cd _{0.2} Dy _{0.2})TaO _{4Journal of the American Ceramic Society, 2021, 104, 5873-5882.}	>3.8	49
29	Influence of ZrO2 alloying effect on the thermophysical properties of fluorite-type Eu3TaO7 ceramics. Scripta Materialia, 2018, 152, 117-121.	5.2	47
30	Enhanced Thermoelectric Performance in Lead-Free Inorganic CsSn _{1<i>–x</i>} Ge _{<i>x</i>} I ₃ Perovskite Semiconductors. Journal of Physical Chemistry C, 2020, 124, 11749-11753.	3.1	45
31	Ultralow lattice thermal conductivity and enhanced power generation efficiency realized in Bi2Te2.7Se0.3/Bi2S3 nanocomposites. Acta Materialia, 2021, 218, 117230.	7.9	45
32	Ultrafast synthesis of ultrasmall polyethylenimine-protected AgBiS ₂ nanodots by "rookie method―for <i>in vivo</i> dual-modal CT/PA imaging and simultaneous photothermal therapy. Nanoscale, 2018, 10, 16765-16774.	5.6	44
33	Commendable Pr ³⁺ -activated Ba ₂ Ga ₂ GeO ₇ phosphor with high-brightness white long-persistent luminescence. Journal of Materials Chemistry C, 2019, 7, 6698-6705.	5.5	44
34	Stability, chemical bonding behavior, elastic properties and lattice thermal conductivity of molybdenum and tungsten borides under hydrostatic pressure. Ceramics International, 2016, 42, 2117-2132.	4.8	43
35	Enhanced thermoelectric properties of SiC nanoparticle dispersed Cu1.8S bulk materials. Journal of Alloys and Compounds, 2017, 696, 782-787.	5.5	43
36	A strategy for developing thermal-quenching-resistant emission and super-long persistent luminescence in BaGa ₂ O ₄ :Bi ³⁺ . Journal of Materials Chemistry C, 2019, 7, 13088-13096.	5.5	42

#	Article	IF	CITATIONS
37	High thermoelectric properties realized in earth-abundant Bi2S3 bulk via carrier modulation and multi-nano-precipitates synergy. Nano Energy, 2020, 78, 105227.	16.0	40
38	Mechanical and thermal properties of RETaO4 (RE = Yb, Lu, Sc) ceramics with monoclinic-prime phase. Journal of Materials Science and Technology, 2020, 52, 20-28.	10.7	40
39	The glass-like thermal conductivity in ZrO2-Dy3TaO7 ceramic for promising thermal barrier coating application. Applied Physics Letters, 2018, 112, .	3.3	39
40	Excellent <i>ZT</i> achieved in Cu _{1.8} S thermoelectric alloys through introducing rare-earth trichlorides. Journal of Materials Chemistry A, 2018, 6, 14440-14448.	10.3	39
41	Enhanced thermoelectric properties of Cu1.8S via introducing Bi2S3 and Bi2S3@Bi core-shell nanorods. Journal of Alloys and Compounds, 2017, 727, 1076-1082.	5.5	36
42	The thermoâ€mechanical properties and ferroelastic phase transition of RENbO ₄ (REÂ=ÂY, La,) Tj E	ГQ <u>g</u> Q00r	gBT_/Overloc
43	Structure and thermal properties of Al2O3-doped Gd3TaO7 as potential thermal barrier coating. Journal of the European Ceramic Society, 2019, 39, 2210-2214.	5.7	35
44	Thermo-mechanical properties of fluorite Yb3TaO7 and Yb3NbO7 ceramics with glass-like thermal conductivity. Journal of Alloys and Compounds, 2019, 788, 1231-1239.	5.5	34
45	Achieving a fine balance in mechanical properties and thermoelectric performance in commercial Bi2Te3 materials. Ceramics International, 2020, 46, 14994-15002. Calculation of the thermal conductivity of communath	4.8	34
46	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi>L</mml:mi><mml:mrow><mml:mn>2xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow< td=""><td>ow<u></u> s.2/mml 3.2</td><td>:msyb></td></mml:mrow<></mml:msub></mml:mrow></mml:mn></mml:mrow></mml:msub></mml:mrow>	ow <u></u> s.2/mml 3.2	:msyb>
47	A highly active (102) surface-induced rapid degradation of a CuS nanotheranostic platform for <i>inn situ T</i> O <mml:math situ T</mml:math 	5.6	33
48	Highly enhanced thermoelectric properties of nanostructured Bi ₂ S ₃ bulk materials <i>via</i> carrier modification and multi-scale phonon scattering. Inorganic Chemistry Frontiers, 2019, 6, 1374-1381.	6.0	33
49	DHQ-graphene: a novel two-dimensional defective graphene for corrosion-resistant coating. Journal of Materials Chemistry A, 2019, 7, 8967-8974.	10.3	33
50	A Reconfigurable Remotely Epitaxial VO ₂ Electrical Heterostructure. Nano Letters, 2020,	9.1	33

50	20, 33-42.	9.1	33
51	Exploring the intrinsic ductile metastable Fe-C compounds: Complex chemical bonds, anisotropic elasticity and variable thermal expansion. Journal of Alloys and Compounds, 2018, 745, 196-211.	5.5	32
52	Effect of Al ³⁺ doping on mechanical and thermal properties of DyTaO ₄ as promising thermal barrier coating application. Journal of the American Ceramic Society, 2018, 101, 1818-1823.	3.8	32
53	Influence of HfO2 alloying effect on microstructure and thermal conductivity of HoTaO4 ceramics. Journal of Advanced Ceramics, 2019, 8, 537-544.	17.4	32
54	Design of a mixed-anionic-ligand system for a blue-light-excited orange-yellow emission phosphor Ba _{1.31} Sr _{3.69} (BO ₃) ₃ Cl:Eu ²⁺ . Journal of Materials Chemistry C, 2020, 8, 3040-3050.	5.5	31

4

#	Article	IF	CITATIONS
55	Facile synthesis of Ag ₂ Te nanowires and thermoelectric properties of Ag ₂ Te polycrystals sintered by spark plasma sintering. CrystEngComm, 2019, 21, 1718-1727.	2.6	30
56	Theoretical and experimental investigations of mechanical properties for polymorphous YTaO ₄ ceramics. Journal of the American Ceramic Society, 2019, 102, 7656-7664.	3.8	30
5 7	Remarkably enhanced thermoelectric properties of Bi2S3 nanocomposites via modulation doping and grain boundary engineering. Applied Surface Science, 2020, 520, 146341.	6.1	29
58	Realizing High Thermoelectric Performance in Earthâ€Abundant Bi ₂ S ₃ Bulk Materials via Halogen Acid Modulation. Advanced Functional Materials, 2021, 31, 2102838.	14.9	27
59	Multialloying effect on thermophysical properties of Cr ₇ C ₃ â€ŧype carbides. Journal of the American Ceramic Society, 2017, 100, 1588-1597.	3.8	26
60	Improvements of thermoelectric properties for p-type Cu _{1.8} S bulk materials via optimizing the mechanical alloying process. Inorganic Chemistry Frontiers, 2017, 4, 1192-1199.	6.0	26
61	Structural phase transitions in Si and SiO2crystals via the random phase approximation. Physical Review B, 2012, 86, .	3.2	25
62	Investigation on microstructures and thermo-physical properties of ferroelastic (Y1-xDyx)TaO4 ceramics. Materialia, 2018, 4, 478-486.	2.7	25
63	Highly enhanced thermoelectric properties of Cu1.8S by introducing PbS. Journal of Alloys and Compounds, 2018, 764, 738-744.	5.5	25
64	Achieving high thermoelectric properties of Bi2S3 via InCl3 doping. Journal of Materials Science, 2020, 55, 263-273.	3.7	25
65	Structure, stability, mechanical and electronic properties of Fe–P binary compounds by first-principles calculations. RSC Advances, 2015, 5, 81943-81956.	3.6	24
66	Elaborating the phases and mechanical properties of multiphase alloy: Experimental two-dimensional mapping combined with theoretical calculations. Materials Characterization, 2017, 134, 347-353.	4.4	24
67	Synthesis and Thermoelectric Properties of Copper Sulfides via Solution Phase Methods and Spark Plasma Sintering. Crystals, 2017, 7, 141.	2.2	24
68	Enhanced power factor within graphene hybridized carbon aerogels. RSC Advances, 2015, 5, 25650-25656.	3.6	22
69	Remote Phononic Effects in Epitaxial Ruddlesden–Popper Halide Perovskites. Journal of Physical Chemistry Letters, 2018, 9, 6676-6682.	4.6	22
70	Thermal properties of Y1â^'xMgxTaO4â^'x/2 ceramics via anion sublattice adjustment. Rare Metals, 2020, 39, 545-554.	7.1	22
71	Features of crystal structures and thermoâ€mechanical properties of weberites RE ₃ NbO ₇ (RE=La, Nd, Sm, Eu, Gd) ceramics. Journal of the American Ceramic Society, 2021, 104, 404-412.	3.8	22
72	Microstructure and performance of YTaO4 coating deposited by atmospheric plasma spraying on TC4 titanium alloy surface. Surface and Coatings Technology, 2022, 431, 128004.	4.8	22

#	Article	IF	CITATIONS
73	Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb). Scientific Reports, 2016, 6, 21821.	3.3	21
74	Point defect interactions in iron lattice: a first-principles study. RSC Advances, 2016, 6, 45250-45258.	3.6	21
75	Optimization thermophysical properties of TiO ₂ alloying Sm ₃ TaO ₇ ceramics as promising thermal barrier coatings. International Journal of Applied Ceramic Technology, 2019, 16, 230-242.	2.1	21
76	High thermoelectric properties realized in earth abundant Bi2S3 bulk materials via Se and Cl co-doping in solution synthesis process. Journal of Materials Science and Technology, 2022, 100, 51-58.	10.7	21
77	Firstâ€principles study of thermophysical properties of polymorphous YTaO ₄ ceramics. Journal of the American Ceramic Society, 2021, 104, 6467-6480.	3.8	20
78	Synergistically enhanced thermoelectric properties of Bi2S3 bulk materials via Cu interstitial doping and BiCl3 alloying. Rare Metals, 2022, 41, 931-941.	7.1	20
79	<i>In situ</i> phase transition induced TM–MoC/Mo ₂ C (TM= Fe, Co, Ni, and Cu) heterostructure catalysts for efficient hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 10493-10502.	10.3	20
80	Effects of second phases on thermoelectric properties in copper sulfides with Sn addition. Journal of Materials Research, 2017, 32, 3029-3037.	2.6	19
81	Synthesis, crystal structure and thermophysical properties of (La1-XEuX)3TaO7 ceramics. Ceramics International, 2018, 44, 16273-16281.	4.8	19
82	Investigation on thermo-physical and mechanical properties of Dy3(Ta1-xNbx)O7 ceramics with order-disorder transition. Ceramics International, 2019, 45, 15705-15710.	4.8	19
83	Achieved limit thermal conductivity and enhancements of mechanical properties in fluorite RE3NbO7 via entropy engineering. Applied Physics Letters, 2021, 118, .	3.3	19
84	A review on low dimensional metal halides: Vapor phase epitaxy and physical properties. Journal of Materials Research, 2017, 32, 3992-4024.	2.6	18
85	Preparation of Niâ€Encapsulated ZTA Particles as Precursors to Reinforce Ironâ€Based Composites. Advanced Engineering Materials, 2017, 19, 1700268.	3.5	18
86	Facile Synthesis of NaBiS ₂ Nanoribbons as a Promising Visible Lightâ€Driven Photocatalyst. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800135.	2.4	18
87	Investigation of the thermophysical properties of (Y1-xYbx)TaO4 ceramics. Journal of the European Ceramic Society, 2020, 40, 3111-3121.	5.7	18
88	Investigation on the photoluminescence and thermoluminescence of BaGa ₂ O ₄ :Bi ³⁺ at extremely low temperatures. Journal of Materials Chemistry C, 2021, 9, 1786-1793.	5.5	18
89	Kust-I: a high-performance two-dimensional graphene-based material for seawater desalination. Journal of Materials Chemistry A, 2021, 9, 21158-21166.	10.3	18
90	Thermoelectric properties of polycrystalline SnSe _{1±x} prepared by mechanical alloying and spark plasma sintering. RSC Advances, 2016, 6, 92335-92340.	3.6	17

#	Article	IF	CITATIONS
91	A first-principles calculation of structural, mechanical, thermodynamic and electronic properties of binary Ni–Y compounds. RSC Advances, 2018, 8, 41575-41586.	3.6	17
92	Synthesis and thermophysics properties of ferroelastic SmNb1-XTaXO4 ceramics. Ceramics International, 2018, 44, 13999-14006.	4.8	17
93	Probing the mechanical properties of ordered and disordered Pt-Ir alloys by first-principles calculations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 405, 127424.	2.1	17
94	The effect of ZrO ₂ alloying on the microstructures and thermal properties of DyTaO ₄ for highâ€ŧemperature application. Journal of the American Ceramic Society, 2019, 102, 889-895.	3.8	16
95	Rapid screening of alloy elements to improve the elastic properties of dilute Pt-based alloys: High-throughput first-principles calculations and modeling. Journal of Applied Physics, 2020, 128, .	2.5	16
96	Evaluation of Phase Transformation and Mechanical Properties of Metastable Yttria-Stabilized Zirconia by Nanoindentation. Materials, 2019, 12, 1677.	2.9	15
97	Mechanical properties, thermal expansion performance and intrinsic lattice thermal conductivity of AlMO4 (M=Ta, Nb) ceramics for high-temperature applications. Ceramics International, 2019, 45, 6616-6623.	4.8	15
98	Unveiling the mechanism of rare earth doping to optimize the optical performance of the CsPbBr ₃ perovskite. Inorganic Chemistry Frontiers, 2020, 7, 4669-4676.	6.0	15
99	Fabrication and characterization of 8YSZ ceramic based abradable seal coatings by atmospheric plasma spraying. Ceramics International, 2020, 46, 26530-26538.	4.8	15
100	Study of a color-tunable long afterglow phosphor Gd _{1.5} Y _{1.5} Ga ₃ Al ₂ O ₁₂ :Tb ³⁺ : luminescence properties and mechanism. RSC Advances, 2020, 10, 28049-28058.	3.6	15
101	Enhanced thermoelectric performance of Cu1.8S via lattice softening. Chemical Engineering Journal, 2022, 428, 131153.	12.7	15
102	The effects of ordered carbon vacancies on stability and thermo-mechanical properties of V8C7 compared with VC. Scientific Reports, 2016, 6, 34007.	3.3	14
103	Mechanical properties, electronic structure and alkali-ion diffusion of Eldfellite-type AFe(SO ₄) ₂ (A = Li, Na, K) as potential cathode materials comparing with LiFePO ₄ . Journal of Micromechanics and Molecular Physics, 2017, 02, 1750002.	1.2	14
104	Thermophysical properties of SmTaO ₄ , Sm ₃ TaO ₇ and SmTa ₃ O ₉ ceramics. Materials Research Express, 2020, 7, 015204.	1.6	14
105	Excellent thermoelectric performance achieved in Bi ₂ Te ₃ /Bi ₂ S ₃ @Bi nanocomposites. Chemical Communications, 2021, 57, 2555-2558.	4.1	14
106	One-step conversion of CsPbBr ₃ into Cs ₄ PbBr ₆ /CsPbBr ₃ @Ta ₂ O ₅ core–shell microcrystals with enhanced stability and photoluminescence. Journal of Materials Chemistry C, 2021, 9. 1228-1234.	5.5	14
107	Decoration of upconversion nanocrystals with metal sulfide quantum dots by a universal <i>in situ</i> controlled growth strategy. Nanoscale, 2020, 12, 3977-3987.	5.6	13
108	Effects of sintering temperature on thermoelectric properties of Cu _{1.8} S bulk materials. Materials Research Express, 2020, 7, 015923.	1.6	13

#	Article	IF	CITATIONS
109	Correlation analysis of materials properties by machine learning: illustrated with stacking fault energy from first-principles calculations in dilute fcc-based alloys. Journal of Physics Condensed Matter, 2021, 33, 295702.	1.8	13
110	Changes of alloying elements on elasticity and solid solution strengthening of α-Ti alloys: a comprehensive high-throughput first-principles calculations. Rare Metals, 2022, 41, 2719-2731.	7.1	13
111	Thermophysical properties of rare earth barium aluminates. Journal of the American Ceramic Society, 2018, 101, 2718-2723.	3.8	12
112	Thermophysical and mechanical properties of YTaO4 ceramic by niobium substitution tantalum. Materials Letters, 2020, 268, 127586.	2.6	12
113	Potential thermal barrier coating materials: RE2FeTaO7 (REÂ= Y, Eu, Gd, Dy) compounds. Journal of Alloys and Compounds, 2021, 855, 157408.	5.5	12
114	Near-Infrared-Light-Responsive Copper Oxide Nanoparticles as Efficient Theranostic Nanoagents for Photothermal Tumor Ablation. ACS Applied Bio Materials, 2021, 4, 5266-5275.	4.6	12
115	Simultaneous Enhancement of Photoluminescence and Stability of CsPbCl ₃ Perovskite Enabled by Titanium Ion Dopant. Journal of Physical Chemistry Letters, 2021, 12, 10746-10752.	4.6	12
116	Excellent thermoelectric properties and stability realized in copper sulfides based composites via complex nanostructuring. Acta Materialia, 2022, 233, 117972.	7.9	12
117	Enhanced thermoelectric properties of In ₂ O ₃ (ZnO) ₅ intrinsic superlattice ceramics by optimizing the sintering process. RSC Advances, 2017, 7, 49883-49889.	3.6	11
118	Thermodynamic analysis of the interface reaction and thermal stress of WCp/Fe composites. Ceramics International, 2020, 46, 26210-26215.	4.8	11
119	Design of Fe2B-based ductile high temperature ceramics: First-principles calculations and experimental validation. Ceramics International, 2022, 48, 27163-27173.	4.8	11
120	Effect of water vapor on the failure behavior of thermal barrier coating with Hf-doped NiCoCrAlY bond coating. Journal of Materials Research, 2019, 34, 2653-2663.	2.6	10
121	Lanthanide-doped bismuth-based fluoride nanoparticles: controlled synthesis and ratiometric temperature sensing. CrystEngComm, 2020, 22, 3432-3438.	2.6	10
122	Highly Enhanced Thermoelectric and Mechanical Properties of Bi-Sb-Te Compounds by Carrier Modulation and Microstructure Adjustment. ACS Applied Materials & Interfaces, 2021, 13, 45589-45599.	8.0	10
123	Synthesis and thermophysical properties of <i>A</i> Ta ₂ O ₆ (<i>AÂ</i> =ÂCo, Ni,) Tj ET 4840-4858.	Qq1 1 0.7 3.8	84314 rgBT 10
124	The rattler effect of phonon propagation in defect-fluorite Dy3(Nb1-xTix)O7-x/2. Ceramics International, 2018, 44, 21998-22002.	4.8	9
125	First-principles study of pressure-induced phase transformations in thermoelectric Mg2Si. Journal of Alloys and Compounds, 2019, 773, 988-996.	5.5	9
126	Unveiling the Relationship between Energy Transfer and the Triplet Energy Level by Tuning Diarylethene within Europium(III) Complexes. Inorganic Chemistry, 2020, 59, 661-668.	4.0	9

#	Article	IF	CITATIONS
127	Multivariant ligands stabilize anionic solvent-oriented α-CsPbX ₃ nanocrystals at room temperature. Nanoscale, 2021, 13, 4899-4910.	5.6	9
128	Engineering Cu _{2â^'<i>x</i>} S-conjugated upconverting nanocomposites for NIR-II light-induced enhanced chemodynamic/photothermal therapy of cancer. Journal of Materials Chemistry B, 2021, 9, 7216-7228.	5.8	9
129	Precious metal nanoparticles dispersing toward highly enhanced mechanical and thermoelectric properties of copper sulfides. Journal of Alloys and Compounds, 2022, 892, 162035.	5.5	9
130	Insight into the Characteristics of 4f-Related Electronic Transitions for Rare-Earth-Doped KLuS ₂ Luminescent Materials through First-Principles Calculation. Journal of Physical Chemistry C, 2020, 124, 932-938.	3.1	8
131	Thermophysical properties of Yb(Ta Nb1â^')O4 ceramics with different crystal structures. Ceramics International, 2020, 46, 28451-28458.	4.8	8
132	Investigation on the stability, electronic, optical, and mechanical properties of novel calcium carbonate hydrates via firstâ€principles calculations. International Journal of Quantum Chemistry, 2020, 120, e26219.	2.0	8
133	Lattice stability, mechanical and thermal properties of a new class of multicomponent (Fe, Mo, W)6C η carbides with different atomic site configurations. Ceramics International, 2022, 48, 5107-5118.	4.8	8
134	Atomicâ€Scale Observation of Offâ€Centering Rattlers in Filled Skutterudites. Advanced Energy Materials, 2022, 12, .	19.5	8
135	Electronic, mechanical and hydrogen storage properties of novel Mg3N2. Journal of Alloys and Compounds, 2019, 800, 8-15.	5.5	7
136	Shashlik-like Te–Bi2Te3 hetero-nanostructures: one-pot synthesis, growth mechanism and their thermoelectric properties. CrystEngComm, 2019, 21, 3694-3701.	2.6	7
137	Thermal and Mechanical Properties Optimization of ABO4 Type EuNbO4 By the B-Site Substitution of Ta. Engineering, 2020, 6, 178-185.	6.7	7
138	Effects of the alloying element on the stacking fault energies of dilute Ir-based superalloys: A comprehensive first-principles study. Journal of Materials Research, 2020, 35, 2718-2725.	2.6	7
139	Achievement of Excellent Thermoelectric Properties in Cu–Se–S Compounds via In Situ Phase Separation. Inorganic Chemistry, 2021, 60, 13269-13277.	4.0	7
140	Enhanced Thermoelectric and Mechanical Properties of BaO-Doped BiCuSeO _{l´} Ceramics. ACS Applied Energy Materials, 2021, 4, 13077-13084.	5.1	7
141	Revealing the stability, elastic properties and electronic structures of Pd-V intermetallics via first principle calculations. AIP Advances, 2018, 8, .	1.3	6
142	Effect of solution treatment on mechanical properties and microstructure of welded joints of Fe-29Mn-9Al-0.9C low-density steel. Journal of Micromechanics and Molecular Physics, 2020, 05, 2050006.	1.2	6
143	Synergistic modulation of electrical and thermal properties of Cu1.8S bulk materials via nanostructuring and band engineering. Journal of Alloys and Compounds, 2021, 852, 156972.	5.5	6
144	Multiphonon scattering mechanisms to limit thermal conductivity in weberite RE3NbO7: A case study of (La1-xGdx)3NbO7 ceramics. Ceramics International, 2021, 47, 23222-23233.	4.8	6

#	Article	IF	CITATIONS
145	Effects of different LaCl3 doping processes on the thermoelectric properties of SnSe bulk materials. Journal of Solid State Chemistry, 2022, 310, 123037.	2.9	6
146	Facile Synthesis Bi2Te3 Based Nanocomposites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Nanomaterials, 2021, 11, 3390.	4.1	6
147	CH3NH3Cd0.875Pb0.125I3 perovskite as potential photovoltaic materials. AIP Advances, 2016, 6, 115208.	1.3	5
148	Fabrication and characterization of Ni-decorated h-BN powders with ChCl-EG ionic liquid as addition by electroless deposition. Royal Society Open Science, 2018, 5, 180146.	2.4	5
149	Enhanced thermoelectric properties of Bi ₂ S ₃ polycrystals through an electroless nickel plating process. RSC Advances, 2019, 9, 23029-23035.	3.6	5
150	Selenium Vacancy Engineering Using Bi ₂ Se ₃ Nanodots for Boosting Highly Efficient Photonic Hyperthermia. ACS Applied Materials & Interfaces, 2021, 13, 48378-48385.	8.0	5
151	Highly enhanced thermoelectric properties of Bi2S3 via (Se, Cl)-co doping in hydrothermal synthesis process. Journal of Alloys and Compounds, 2022, 922, 166252.	5.5	5
152	Impact of ZrO2 alloying on thermo-mechanical properties of Gd3NbO7. Ceramics International, 2020, 46, 6174-6181.	4.8	4
153	Microstructure and thermophysical properties of CeO2-doped SmTaO4 ceramics for thermal barrier coatings. Journal of Materials Research, 2020, 35, 242-251.	2.6	4
154	Tunable ultra-uniform Cs ₄ PbBr ₆ perovskites with efficient photoluminescence and excellent stability for high-performance white light-emitting diodes. Journal of Materials Chemistry C, 2021, 9, 12811-12818.	5.5	4
155	Investigation of thermophysical properties of ZrO2-Sm3TaO7 ceramics. Journal of Asian Ceramic Societies, 2021, 9, 629-638.	2.3	4
156	Structure and enhanced thermoelectric properties of InGaO3(ZnO)m (m=1, 2, 3, 4, and 5) ceramics. Journal of the European Ceramic Society, 2022, 42, 485-489.	5.7	4
157	Origins of high fracture toughness and glassâ€like thermal conductivity in Zr–Ta–O composites. Journal of the American Ceramic Society, 2022, 105, 6508-6516.	3.8	4
158	Thermoelectric Properties of In2O3(ZnO)k (k = 3, 4, 5, 7) Superlattice Ceramics. Journal of Electronic Materials, 2019, 48, 7068-7075.	2.2	3
159	Realizing High Photocatalytic Performance of NaBiS ₂ Nanopowders via the Introduction of Rareâ€Earth Elements. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900061.	1.8	3
160	Phase structures and thermophysical properties of ZrO2-doped SmTaO4 ceramics. Modern Physics Letters B, 2019, 33, 1950132.	1.9	3
161	Ligand-Induced Nucleation Growth Kinetics of CdTe QDs: Implications for White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 401-410.	5.0	3
162	Synthesis and thermoelectric properties of InSb alloys by solid reaction. Data in Brief, 2018, 21, 2515-2517.	1.0	2

#	Article	IF	CITATIONS
163	The thermophysical properties and defect chemistry of HfO2–Sm3TaO7 ceramics. Journal of Materials Research, 2020, 35, 2230-2238.	2.6	2
164	Editorial for advanced structural ceramics technology and characteristics. Rare Metals, 2020, 39, 460-462.	7.1	2
165	Realizing High Thermoelectric Performance in Earthâ€Abundant Bi ₂ S ₃ Bulk Materials via Halogen Acid Modulation (Adv. Funct. Mater. 37/2021). Advanced Functional Materials, 2021, 31, 2170277.	14.9	2
166	Sintering, thermal expansion, and thermal transport properties of A4Ta2O9 (A= Ca, Mg) tantalates. Ceramics International, 2022, 48, 23397-23403.	4.8	2
167	Characterization of Tetragonal-Monoclinic, Ferroelastic Transformation and Domain Boundaries in Zirconia-Alloyed Yttrium Tantalate. Microscopy and Microanalysis, 2014, 20, 1930-1931.	0.4	1
168	Properties of Fe–Mn–Al alloys with different Mn contents using density functional theory. Rare Metals, 2018, , 1.	7.1	1
169	Numerical Optimization for the Geometric Configuration of Ceramics Perform in HCCI/ZTAP Wear-Resistant Composites Based on Actual Particle Model. Nanoscale Research Letters, 2021, 16, 71.	5.7	0
170	Structures, and Thermophysical Properties Characterizations of (La1-xHox)3NbO7 Solid Solutions as Thermal Barrier Coatings. Frontiers in Materials, 2021, 8, .	2.4	0