

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627070/publications.pdf Version: 2024-02-01

		23879	27587
118	25,346	60	110
papers	citations	h-index	g-index
121	121	121	31356
all docs	docs citations	times ranked	citing authors

Ητιλ Υτι

#	Article	IF	CITATIONS
1	Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nature Communications, 2022, 13, .	5.8	31
2	Fatty acid oxidation protects cancer cells from apoptosis by increasing mitochondrial membrane lipids. Cell Reports, 2022, 39, 110870.	2.9	31
3	Abstract 2432: Somatic mutations in the STAT3 activation pathway are associated with improved survival in gynecologic malignancies and provide a molecular rationale for therapeutic targeting. , 2021, , .		0
4	Co-delivery of paclitaxel and STAT3 siRNA by a multifunctional nanocomplex for targeted treatment of metastatic breast cancer. Acta Biomaterialia, 2021, 134, 649-663.	4.1	32
5	Metastasis-Entrained Eosinophils Enhance Lymphocyte-Mediated Antitumor Immunity. Cancer Research, 2021, 81, 5555-5571.	0.4	35
6	Potent antitumor effects of cell-penetrating peptides targeting STAT3 axis. JCI Insight, 2021, 6, .	2.3	11
7	PARP Inhibition Activates STAT3 in Both Tumor and Immune Cells Underlying Therapy Resistance and Immunosuppression In Ovarian Cancer. Frontiers in Oncology, 2021, 11, 724104.	1.3	13
8	Integrin α6 signaling induces STAT3-TET3-mediated hydroxymethylation of genes critical for maintenance of glioma stem cells. Oncogene, 2020, 39, 2156-2169.	2.6	23
9	STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metabolism, 2020, 31, 148-161.e5.	7.2	201
10	CD44 in Ovarian Cancer Progression and Therapy Resistance—A Critical Role for STAT3. Frontiers in Oncology, 2020, 10, 589601.	1.3	39
11	An effective cell-penetrating antibody delivery platform. JCI Insight, 2019, 4, .	2.3	14
12	JAK/STAT3-Regulated Fatty Acid β-Oxidation Is Critical for Breast Cancer Stem Cell Self-Renewal and Chemoresistance. Cell Metabolism, 2018, 27, 136-150.e5.	7.2	519
13	Reduced <scp>IL</scp> â€6 levels and tumorâ€associated phosphoâ€ <scp>STAT</scp> 3 are associated with reduced tumor development in a mouse model of lung cancer chemoprevention with <i>myoâ€</i> inositol. International Journal of Cancer, 2018, 142, 1405-1417.	2.3	33
14	T ell Protein Tyrosine Phosphatase Restricts Intestinal Epithelial Cell Expression of the Oncogene Annexin A4. FASEB Journal, 2018, 32, 610.2.	0.2	0
15	Tumour ischaemia by interferon-Î ³ resembles physiological blood vessel regression. Nature, 2017, 545, 98-102.	13.7	199
16	Extrafollicular CD4+ T-B interactions are sufficient for inducing autoimmune-like chronic graft-versus-host disease. Nature Communications, 2017, 8, 978.	5.8	58
17	CTLA4 Promotes Tyk2-STAT3–Dependent B-cell Oncogenicity. Cancer Research, 2017, 77, 5118-5128.	0.4	34
18	Sphingosine-1-Phosphate Receptor-1 Promotes Environment-Mediated and Acquired Chemoresistance. Molecular Cancer Therapeutics, 2017, 16, 2516-2527.	1.9	16

#	Article	IF	CITATIONS
19	Inhibition of the STAT3 signaling pathway contributes to apigenin-mediated anti-metastatic effect in melanoma. Scientific Reports, 2016, 6, 21731.	1.6	107
20	CD5 Binds to Interleukin-6 and Induces a Feed-Forward Loop with the Transcription Factor STAT3 in B Cells to Promote Cancer. Immunity, 2016, 44, 913-923.	6.6	120
21	STAT3 in CD8+ T Cells Inhibits Their Tumor Accumulation by Downregulating CXCR3/CXCL10 Axis. Cancer Immunology Research, 2015, 3, 864-870.	1.6	73
22	CD8 ⁺ T ell immunosurveillance constrains lymphoid premetastatic myeloid cell accumulation. European Journal of Immunology, 2015, 45, 71-81.	1.6	26
23	Clinical and Translational Assessment of VEGFR1 as a Mediator of the Premetastatic Niche in High-Risk Localized Prostate Cancer. Molecular Cancer Therapeutics, 2015, 14, 2896-2900.	1.9	15
24	Extrafollicular CD4+ T and B Interaction Induces Chronic Gvhd in the Absence of Germinal Center Formation. Blood, 2015, 126, 1875-1875.	0.6	0
25	Inhibition of <scp>STAT</scp> 3 signalling contributes to the antimelanoma action of atractylenolide <scp>II</scp> . Experimental Dermatology, 2014, 23, 855-857.	1.4	28
26	Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling. Biochemical Pharmacology, 2014, 87, 424-434.	2.0	141
27	Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nature Reviews Cancer, 2014, 14, 736-746.	12.8	1,672
28	Loss of Androgen Receptor Expression Promotes a Stem-like Cell Phenotype in Prostate Cancer through STAT3 Signaling. Cancer Research, 2014, 74, 1227-1237.	0.4	169
29	TLR9 Is Critical for Glioma Stem Cell Maintenance and Targeting. Cancer Research, 2014, 74, 5218-5228.	0.4	60
30	S1PR1 Is Crucial for Accumulation of Regulatory T Cells in Tumors via STAT3. Cell Reports, 2014, 6, 992-999.	2.9	80
31	CTLA4 aptamer delivers STAT3 siRNA to tumor-associated and malignant T cells. Journal of Clinical Investigation, 2014, 124, 2977-2987.	3.9	125
32	STAT3 activation in tumor cell-free lymph nodes predicts a poor prognosis for gastric cancer. International Journal of Clinical and Experimental Pathology, 2014, 7, 1140-6.	0.5	11
33	JAK/STAT Signaling inÂMyeloid Cells. , 2013, , 435-449.		0
34	Dual inhibition of Janus and Src family kinases by novel indirubin derivative blocks constitutivelyâ€activated Stat3 signaling associated with apoptosis of human pancreatic cancer cells. Molecular Oncology, 2013, 7, 369-378.	2.1	69
35	TLR9-mediated siRNA delivery for targeting of normal and malignant human hematopoietic cells in vivo. Blood, 2013, 121, 1304-1315.	0.6	103
36	B7-H3 Associated with Tumor Progression and Epigenetic Regulatory Activity in Cutaneous Melanoma. Journal of Investigative Dermatology, 2013, 133, 2050-2058.	0.3	121

#	Article	IF	CITATIONS
37	Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13079-13084.	3.3	107
38	Critical Role of STAT3 in IL-6–Mediated Drug Resistance in Human Neuroblastoma. Cancer Research, 2013, 73, 3852-3864.	0.4	109
39	G-protein-coupled Receptor Agonist BV8/Prokineticin-2 and STAT3 Protein Form a Feed-forward Loop in Both Normal and Malignant Myeloid Cells. Journal of Biological Chemistry, 2013, 288, 13842-13849.	1.6	49
40	Prognostic Significance of B-Cells and pSTAT3 in Patients with Ovarian Cancer. PLoS ONE, 2013, 8, e54029.	1.1	56
41	B Cells Promote Tumor Progression via STAT3 Regulated-Angiogenesis. PLoS ONE, 2013, 8, e64159.	1.1	118
42	Icaritin Inhibits JAK/STAT3 Signaling and Growth of Renal Cell Carcinoma. PLoS ONE, 2013, 8, e81657.	1.1	76
43	Myeloid Clusters Are Associated with a Pro-Metastatic Environment and Poor Prognosis in Smoking-Related Early Stage Non-Small Cell Lung Cancer. PLoS ONE, 2013, 8, e65121.	1.1	15
44	Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biology and Therapy, 2012, 13, 534-541.	1.5	25
45	Acetylated STAT3 is crucial for methylation of tumor-suppressor gene promoters and inhibition by resveratrol results in demethylation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7765-7769.	3.3	198
46	S1PR1 is an effective target to block STAT3 signaling in activated B cell–like diffuse large B-cell lymphoma. Blood, 2012, 120, 1458-1465.	0.6	94
47	Sorafenib inhibits endogenous and IL-6/S1P induced JAK2-STAT3 signaling in human neuroblastoma, associated with growth suppression and apoptosis. Cancer Biology and Therapy, 2012, 13, 349-357.	1.5	28
48	S1PR1-STAT3 Signaling Is Crucial for Myeloid Cell Colonization at Future Metastatic Sites. Cancer Cell, 2012, 21, 642-654.	7.7	229
49	STAT3 and Src Signaling in Melanoma. , 2012, , 89-105.		0
50	Characterizing and Modulating the Tumor Microenvironment in Renal Cell Carcinoma: Potential Therapeutic Strategies. , 2012, , 239-252.		0
51	Humanized Lewis-Y Specific Antibody Based Delivery of <i>STAT3</i> siRNA. ACS Chemical Biology, 2011, 6, 962-970.	1.6	41
52	Oncogene-Targeting T Cells Reject Large Tumors while Oncogene Inactivation Selects Escape Variants in Mouse Models of Cancer. Cancer Cell, 2011, 20, 755-767.	7.7	40
53	Antiangiogenic and Antimetastatic Activity of JAK Inhibitor AZD1480. Cancer Research, 2011, 71, 6601-6610.	0.4	109
54	A Requirement of STAT3 DNA Binding Precludes Th-1 Immunostimulatory Gene Expression by NF-κB in Tumors. Cancer Research, 2011, 71, 3772-3780.	0.4	38

#	Article	IF	CITATIONS
55	STAT3 Inhibition Is a Therapeutic Strategy for ABC-like Diffuse Large B-Cell Lymphoma. Cancer Research, 2011, 71, 3182-3188.	0.4	95
56	STAT3-induced S1PR1 expression is crucial for persistent STAT3 activation in tumors. Nature Medicine, 2010, 16, 1421-1428.	15.2	346
57	Targeting Stat3 in the Myeloid Compartment Drastically Improves the <i>In vivo</i> Antitumor Functions of Adoptively Transferred T Cells. Cancer Research, 2010, 70, 7455-7464.	0.4	118
58	Targeting STAT3 in Adoptively Transferred T Cells Promotes Their <i>In Vivo</i> Expansion and Antitumor Effects. Cancer Research, 2010, 70, 9599-9610.	0.4	108
59	Antitumor Activity of Targeting Src Kinases in Endothelial and Myeloid Cell Compartments of the Tumor Microenvironment. Clinical Cancer Research, 2010, 16, 924-935.	3.2	53
60	Breaking through a Plateau in Renal Cell Carcinoma Therapeutics: Development and Incorporation of Biomarkers. Molecular Cancer Therapeutics, 2010, 9, 3115-3125.	1.9	24
61	Sunitinib Induces Apoptosis and Growth Arrest of Medulloblastoma Tumor Cells by Inhibiting STAT3 and AKT Signaling Pathways. Molecular Cancer Research, 2010, 8, 35-45.	1.5	95
62	Deciphering the anticancer mechanisms of sunitinib. Cancer Biology and Therapy, 2010, 10, 712-714.	1.5	5
63	IL-17 Enhances Tumor Development in Carcinogen-Induced Skin Cancer. Cancer Research, 2010, 70, 10112-10120.	0.4	157
64	STAT3: A Target to Enhance Antitumor Immune Response. Current Topics in Microbiology and Immunology, 2010, 344, 41-59.	0.7	97
65	Toll-like Receptor 9 Activation of Signal Transducer and Activator of Transcription 3 Constrains Its Agonist-Based Immunotherapy. Cancer Research, 2009, 69, 2497-2505.	0.4	117
66	Sunitinib Inhibition of Stat3 Induces Renal Cell Carcinoma Tumor Cell Apoptosis and Reduces Immunosuppressive Cells. Cancer Research, 2009, 69, 2506-2513.	0.4	453
67	Regulation of the IL-23 and IL-12 Balance by Stat3 Signaling in the Tumor Microenvironment. Cancer Cell, 2009, 15, 114-123.	7.7	431
68	Persistently Activated Stat3 Maintains Constitutive NF-κB Activity in Tumors. Cancer Cell, 2009, 15, 283-293.	7.7	585
69	The JAK2 Inhibitor AZD1480 Potently Blocks Stat3 Signaling and Oncogenesis in Solid Tumors. Cancer Cell, 2009, 16, 487-497.	7.7	478
70	Stat3 inhibition activates tumor macrophages and abrogates glioma growth in mice. Glia, 2009, 57, 1458-1467.	2.5	165
71	In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nature Biotechnology, 2009, 27, 925-932.	9.4	352
72	STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer, 2009, 9, 798-809.	12.8	3,503

#	Article	IF	CITATIONS
73	IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. Journal of Experimental Medicine, 2009, 206, 1457-1464.	4.2	714
74	Src activation in melanoma and Src inhibitors as therapeutic agents in melanoma. Melanoma Research, 2009, 19, 167-175.	0.6	52
75	IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. Journal of Cell Biology, 2009, 186, i2-i2.	2.3	1
76	Role of Stat3 in suppressing anti-tumor immunity. Current Opinion in Immunology, 2008, 20, 228-233.	2.4	166
77	Signal Transducer and Activator of Transcription 3 Is Required for Hypoxia-Inducible Factor-1α RNA Expression in Both Tumor Cells and Tumor-Associated Myeloid Cells. Molecular Cancer Research, 2008, 6, 1099-1105.	1.5	162
78	Stat3 mediates myeloid cell–dependent tumor angiogenesis in mice. Journal of Clinical Investigation, 2008, 118, 3367-3377.	3.9	473
79	Activated Stat-3 in Melanoma. Cancer Control, 2008, 15, 196-201.	0.7	62
80	Activated Signal Transducers and Activators of Transcription 3 Signaling Induces CD46 Expression and Protects Human Cancer Cells from Complement-Dependent Cytotoxicity. Molecular Cancer Research, 2007, 5, 823-832.	1.5	43
81	Cutting Edge: An In Vivo Requirement for STAT3 Signaling in TH17 Development and TH17-Dependent Autoimmunity. Journal of Immunology, 2007, 179, 4313-4317.	0.4	514
82	Stat3 as a Potential Target for Cancer Immunotherapy. Journal of Immunotherapy, 2007, 30, 131-139.	1.2	80
83	Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nature Reviews Immunology, 2007, 7, 41-51.	10.6	1,588
84	Methylation of Stat1 Promoter Can Contribute to Squamous Cell Carcinogenesis. Journal of the National Cancer Institute, 2006, 98, 154-155.	3.0	1
85	Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nature Medicine, 2005, 11, 1314-1321.	15.2	917
86	Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene, 2005, 24, 5552-5560.	2.6	523
87	Targeting STAT3 affects melanoma on multiple fronts. Cancer and Metastasis Reviews, 2005, 24, 315-327.	2.7	255
88	Molecular Cloning and Characterization of the Human AKT1 Promoter Uncovers Its Up-regulation by the Src/Stat3 Pathway. Journal of Biological Chemistry, 2005, 280, 38932-38941.	1.6	43
89	Role of Stat3 in Regulating p53 Expression and Function. Molecular and Cellular Biology, 2005, 25, 7432-7440.	1.1	342
90	Chinese Herbal Formula, Bing De Ling, Enhances Antitumor Effects and Ameliorates Weight Loss Induced by 5-Fluorouracil in the Mouse CT26 Tumor Model. DNA and Cell Biology, 2005, 24, 470-475.	0.9	8

#	Article	IF	CITATIONS
91	Stat3 Activity in Melanoma Cells Affects Migration of Immune Effector Cells and Nitric Oxide-Mediated Antitumor Effects. Journal of Immunology, 2005, 174, 3925-3931.	0.4	126
92	Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nature Medicine, 2004, 10, 48-54.	15.2	1,029
93	The STATs of cancer — new molecular targets come of age. Nature Reviews Cancer, 2004, 4, 97-105.	12.8	2,084
94	Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent antitumor activity. Molecular Cancer Therapeutics, 2004, 3, 1533-42.	1.9	135
95	A Critical Role for Stat3 Signaling in Immune Tolerance. Immunity, 2003, 19, 425-436.	6.6	360
96	STAT Proteins as Molecular Targets for Cancer Therapy. , 2003, , 645-661.		0
97	Inhibition of Bcr–Abl kinase activity by PD180970 blocks constitutive activation of Stat5 and growth of CML cells. Oncogene, 2002, 21, 8804-8816.	2.6	127
98	Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene, 2002, 21, 2000-2008.	2.6	1,061
99	Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene, 2002, 21, 7001-7010.	2.6	391
100	Combination therapy with AG-490 and interleukin 12 achieves greater antitumor effects than either agent alone. Molecular Cancer Therapeutics, 2002, 1, 893-9.	1.9	39
101	Use of Gene Gun for Genetic Immunotherapy: In Vitro and In Vivo Methods. , 2001, 61, 223-240.		1
102	Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene, 2001, 20, 2499-2513.	2.6	677
103	Anti-CD40 Antibody Induces Antitumor and Antimetastatic Effects: The Role of NK Cells. Journal of Immunology, 2001, 166, 89-94.	0.4	103
104	Gene gun application in the generation of effector T cells for adoptive immunotherapy. Cancer Immunology, Immunotherapy, 2000, 48, 635-643.	2.0	17
105	Alternative Pathways of Cell Death to Circumvent Pleiotropic Resistance in Myeloma Cells: Role of Cytotoxic T-Lymphocytes. Leukemia and Lymphoma, 2000, 38, 59-70.	0.6	2
106	Bing De Ling, a Chinese Herbal Formula, Stimulates Multifaceted Immunologic Responses in Mice. DNA and Cell Biology, 2000, 19, 515-520.	0.9	7
107	Signal Transducers and Activators of Transcription: Novel Targets for Anticancer Therapeutics. Cancer Control, 1999, 6, 1-7.	0.7	15
108	Cytokine-Based Tumor Cell Vaccine Is Equally Effective Against Parental and Isogenic Multidrug-Resistant Myeloma Cells: The Role of Cytotoxic T Lymphocytes. Blood, 1999, 93, 1831-1837.	0.6	40

#	Article	IF	CITATIONS
109	Interleukin-12 cDNA skin transfection potentiates human papillomavirus E6 DNA vaccine-induced antitumor immune response. Cancer Gene Therapy, 1999, 6, 331-339.	2.2	35
110	Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. Journal of Neuroimmunology, 1999, 97, 77-85.	1.1	73
111	A FEASIBILITY STUDY OF GENE GUN MEDIATED IMMUNOTHERAPY FOR RENAL CELL CARCINOMA. Journal of Urology, 1999, 162, 1259-1263.	0.2	19
112	Broadened Clinical Utility of Gene Gun-Mediated, Granulocyte-Macrophage Colony-Stimulating Factor cDNA-Based Tumor Cell Vaccines as Demonstrated with a Mouse Myeloma Model. Human Gene Therapy, 1998, 9, 1121-1130.	1.4	46
113	Interferon-??-Inducing Factor Elicits Antitumor Immunity Association with Interferon-?? Production. Journal of Immunotherapy, 1998, 21, 48-55.	1.2	35
114	Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene, 1997, 15, 3083-3090.	2.6	185
115	Assessment of intracellular TAPâ€l and TAPâ€2 in conjunction with surface MHC class I in plasma cells from patients with multiple myeloma. British Journal of Haematology, 1997, 98, 426-432.	1.2	11
116	T cell recognition of endogenous IgG2a expressed in B lymphoma cells. European Journal of Immunology, 1988, 18, 341-348.	1.6	32
117	STAT signaling as a molecular target for cancer therapy. , 0, , 305-312.		0
118	Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. , 0, .		11