List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature, 2003, 421, 172-177.	27.8	943
2	Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo. Nature Photonics, 2009, 3, 412-417.	31.4	632
3	Neurotrophin-6 is a new member of the nerve growth factor family. Nature, 1994, 372, 266-269.	27.8	392
4	Tracing Transgene Expression in Living Zebrafish Embryos. Developmental Biology, 2001, 233, 329-346.	2.0	300
5	Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13365-13370.	7.1	275
6	A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. Journal of Clinical Investigation, 2009, 119, 1382-1395.	8.2	238
7	Ectopic lens induction in fish in response to the murine homeobox gene Six3. Mechanisms of Development, 1996, 60, 233-239.	1.7	190
8	Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain, 2009, 132, 1613-1623.	7.6	173
9	Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mechanisms of Development, 1998, 74, 159-164.	1.7	145
10	The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. Journal of Cell Biology, 2010, 191, 875-890.	5.2	145
11	A genetic screen for mutations affecting embryonic development in medaka fish (Oryzias latipes). Mechanisms of Development, 2000, 97, 133-139.	1.7	135
12	Kita Driven Expression of Oncogenic HRAS Leads to Early Onset and Highly Penetrant Melanoma in Zebrafish. PLoS ONE, 2010, 5, e15170.	2.5	134
13	Direct imaging of in vivo neuronal migration in the developing cerebellum. Current Biology, 2001, 11, 1858-1863.	3.9	126
14	Evaluation of arene ruthenium(<scp>ii</scp>) N-heterocyclic carbene complexes as organometallics interacting with thiol and selenol containing biomolecules. Dalton Transactions, 2013, 42, 1657-1666.	3.3	118
15	IAPs regulate the plasticity of cell migration by directly targeting Rac1 for degradation. EMBO Journal, 2012, 31, 14-28.	7.8	117
16	Catalytic Azide Reduction in Biological Environments. ChemBioChem, 2012, 13, 1116-1120.	2.6	113
17	Quantum dots are powerful multipurpose vital labeling agents in zebrafish embryos. Developmental Dynamics, 2005, 234, 670-681.	1.8	100
18	Ectopic Sox3 activity elicits sensory placode formation. Mechanisms of Development, 2000, 95, 175-187.	1.7	98

#	Article	IF	CITATIONS
19	Automated Reporter Quantification In Vivo: High-Throughput Screening Method for Reporter-Based Assays in Zebrafish. PLoS ONE, 2012, 7, e29916.	2.5	96
20	The long adventurous journey of rhombic lip cells in jawed vertebrates: a comparative developmental analysis. Frontiers in Neuroanatomy, 2011, 5, 27.	1.7	86
21	Functional regionalization of the teleost cerebellum analyzed in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11846-11851.	7.1	84
22	The zebrafish cerebellar upper rhombic lip generates tegmental hindbrain nuclei by longâ€distance migration in an evolutionary conserved manner. Journal of Comparative Neurology, 2010, 518, 2794-2817.	1.6	79
23	Cadherin-2 Controls Directional Chain Migration of Cerebellar Granule Neurons. PLoS Biology, 2009, 7, e1000240.	5.6	78
24	The zebrafish cerebellar rhombic lip is spatially patterned in producing granule cell populations of different functional compartments. Developmental Biology, 2008, 313, 167-180.	2.0	77
25	<i>TigarB</i> causes mitochondrial dysfunction and neuronal loss in PINK1 deficiency. Annals of Neurology, 2013, 74, 837-847.	5.3	68
26	Genetic tools for multicolor imaging in zebrafish larvae. Methods, 2013, 62, 279-291.	3.8	64
27	Corallocins A–C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom <i>Hericium coralloides</i> . Journal of Natural Products, 2016, 79, 2264-2269.	3.0	59
28	FGF Signaling Mediates Regeneration of the Differentiating Cerebellum through Repatterning of the Anterior Hindbrain and Reinitiation of Neuronal Migration. Journal of Neuroscience, 2006, 26, 7293-7304.	3.6	58
29	A comparative chemical–biological evaluation of titanium(iv) complexes with a salan or cyclopentadienyl ligand. Chemical Communications, 2013, 49, 4785.	4.1	55
30	Lunatic fringe promotes the lateral inhibition of neurogenesis. Development (Cambridge), 2009, 136, 2523-2533.	2.5	48
31	Global Repression of Cancer Gene Expression in a Zebrafish Model of Melanoma Is Linked to Epigenetic Regulation. Zebrafish, 2009, 6, 417-424.	1.1	48
32	Two New Cyathane Diterpenoids from Mycelial Cultures of the Medicinal Mushroom Hericium erinaceus and the Rare Species, Hericium flagellum. International Journal of Molecular Sciences, 2018, 19, 740.	4.1	47
33	In Vivo Time-Lapse Imaging of Zebrafish Embryonic Development. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4816-pdb.prot4816.	0.3	46
34	Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. Journal of Neuroscience, 2019, 39, 3948-3969.	3.6	31
35	Polysialyltransferase expression is linked to neuronal migration in the developing and adult zebrafish. Developmental Dynamics, 2008, 237, 276-285.	1.8	28
36	The teleost fish medaka (Oryzias latipes) as genetic model to study gravity dependent bone homeostasis in vivo. Advances in Space Research, 2003, 32, 1459-1465.	2.6	27

#	Article	IF	CITATIONS
37	Time-Lapse Microscopy of Brain Development. Methods in Cell Biology, 2004, 76, 207-235.	1.1	23
38	Silencer-delimited transgenesis: NRSE/RE1 sequences promote neural-specific transgene expression in a NRSF/REST-dependent manner. BMC Biology, 2012, 10, 93.	3.8	22
39	Functionally distinct Purkinje cell types show temporal precision in encoding locomotion. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 17330-17337.	7.1	20
40	Novel caspaseâ€ s uicide proteins for tamoxifenâ€inducible apoptosis. Genesis, 2008, 46, 530-536.	1.6	18
41	Eppur Si Muove: Evidence for an External Granular Layer and Possibly Transit Amplification in the Teleostean Cerebellum. Frontiers in Neuroanatomy, 2016, 10, 49.	1.7	16
42	All-age whole mount in situ hybridization to reveal larval and juvenile expression patterns in zebrafish. PLoS ONE, 2020, 15, e0237167.	2.5	15
43	Studying cellular and subcellular dynamics in the developing zebrafish nervous system. Experimental Neurology, 2013, 242, 1-10.	4.1	14
44	Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development (Cambridge), 2016, 143, 4279-4287.	2.5	14
45	Neurotransmitter-mediated activity spatially controls neuronal migration in the zebrafish cerebellum. PLoS Biology, 2018, 16, e2002226.	5.6	14
46	Embryonic zebrafish primary cell culture for transfection and live cellular and subcellular imaging. Developmental Biology, 2017, 430, 18-31.	2.0	13
47	Sequence defined antibodies improve the detection of cadherin 2 (N-cadherin) during zebrafish development. New Biotechnology, 2018, 45, 98-112.	4.4	12
48	Identification of the zebrafish red nucleus using Wheat Germ Agglutinin transneuronal tracing. Communicative and Integrative Biology, 2014, 7, e994383.	1.4	11
49	Platinum alkynyl complexes: Cellular uptake, inhibition of thioredoxin reductase and toxicity in zebrafish embryos. Inorganica Chimica Acta, 2019, 495, 118982.	2.4	11
50	Purkinje cells located in the adult zebrafish valvula cerebelli exhibit variable functional responses. Scientific Reports, 2021, 11, 18408.	3.3	11
51	Rapid directed molecular evolution of fluorescent proteins in mammalian cells. Protein Science, 2022, 31, 728-751.	7.6	11
52	Von Willebrand Factor Mediates Pneumococcal Aggregation and Adhesion in Blood Flow. Frontiers in Microbiology, 2019, 10, 511.	3.5	10
53	NeuroExaminer: an all-glass microfluidic device for whole-brain in vivo imaging in zebrafish. Communications Biology, 2020, 3, 311.	4.4	10
54	<i>In vivo</i> synthesis of meganuclease for generating transgenic zebrafish <i>Danio rerio</i> . Journal of Fish Biology, 2009, 74, 452-457.	1.6	9

#	Article	IF	CITATIONS
55	Culturing and Transfecting Zebrafish PAC2 Fibroblast Cells. Cold Spring Harbor Protocols, 2009, 2009, 2009, pdb.prot5235.	0.3	9
56	In vivo cell biology using Gal4 mediated multicolour subcellular labelling in zebrafish. Communicative and Integrative Biology, 2011, 4, 336-339.	1.4	9
57	Neurological Disease Modelling for Spinocerebellar Ataxia Using Zebrafish. Journal of Experimental Neuroscience, 2019, 13, 117906951988051.	2.3	9
58	Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish. International Journal of Molecular Sciences, 2021, 22, 7351.	4.1	9
59	Glycine is able to induce both a motility speed in- and decrease during zebrafish neuronal migration. Communicative and Integrative Biology, 2018, 11, 1-7.	1.4	8
60	S-Sulfocysteine Induces Seizure-Like Behaviors in Zebrafish. Frontiers in Pharmacology, 2019, 10, 122.	3.5	8
61	Microtubules and motor proteins support zebrafish neuronal migration by directing cargo. Journal of Cell Biology, 2020, 219, .	5.2	8
62	Targeting Olfactory Bulb Neurons Using Combined In Vivo Electroporation and Gal4-Based Enhancer Trap Zebrafish Lines. Journal of Visualized Experiments, 2011, , .	0.3	7
63	Multicolor in vivo time-lapse imaging at cellular resolution by stereomicroscopy. Developmental Dynamics, 2006, 235, 1100-06.	1.8	7
64	Erinacine C Activates Transcription from a Consensus ETS DNA Binding Site in Astrocytic Cells in Addition to NGF Induction. Biomolecules, 2020, 10, 1440.	4.0	5
65	In vivo Imaging of Fully Active Brain Tissue in Awake Zebrafish Larvae and Juveniles by Skull and Skin Removal. Journal of Visualized Experiments, 2021, , .	0.3	4
66	A novel inhibitor rescues cerebellar defects in a zebrafish model of Down syndrome–associated kinase Dyrk1A overexpression. Journal of Biological Chemistry, 2021, 297, 100853.	3.4	4
67	Preparation of Zebrafish Embryos for Transmission Electron Microscopy. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4772-pdb.prot4772.	0.3	4
68	Analysis of Gene Expression by In Situ Hybridization on Adult Zebrafish Brain Sections. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5382-pdb.prot5382.	0.3	3
69	Zebrafish <i>jamâ€b2</i> Gal4â€enhancer trap line recapitulates endogenous <i>jamâ€b2</i> expression in extraocular muscles. Developmental Dynamics, 2015, 244, 1574-1580.	1.8	3
70	Usefulness of a Darwinian System in a Biotechnological Application: Evolution of Optical Window Fluorescent Protein Variants under Selective Pressure. PLoS ONE, 2014, 9, e107069.	2.5	3
71	The centrosome neither persistently leads migration nor determines the site of axonogenesis in migrating neurons in vivo. Journal of Cell Biology, 2010, 191, 1413-1413.	5.2	2
72	Culture and Transfection of Zebrafish Primary Cells. Journal of Visualized Experiments, 2018, , .	0.3	2

#	Article	IF	CITATIONS
73	Development of a Larval Zebrafish Infection Model for Clostridioides difficile . Journal of Visualized Experiments, 2020, , .	0.3	2
74	Structural Analysis and Spatiotemporal Expression of Atxn1 Genes in Zebrafish Embryos and Larvae. International Journal of Molecular Sciences, 2021, 22, 11348.	4.1	2
75	In Vivo Retrograde Labeling of Neurons in the Zebrafish Embryo or Larva with Rhodamine Dextran. Cold Spring Harbor Protocols, 2007, 2007, pdb.prot4832.	0.3	1
76	Fluorescent protein imaging with multispectral optoacoustic tomography. Proceedings of SPIE, 2010, ,	0.8	0
77	Imaging the Cell Biology of Neuronal Migration in Zebrafish. , 2010, , 35-67.		0
78	Lernen durch Lehren: Teach It Forward auf drei Wegen. , 2019, , 409-417.		0