
Vassiliki Aroniadou-Anderjaska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7624913/publications.pdf Version: 2024-02-01

VASSILIKI

#	Article	IF	CITATIONS
1	Increased inhibitory activity in the basolateral amygdala and decreased anxiety during estrus: A potential role for ASIC1a channels. Brain Research, 2021, 1770, 147628.	2.2	6
2	Targeting the glutamatergic system to counteract organophosphate poisoning: A novel therapeutic strategy. Neurobiology of Disease, 2020, 133, 104406.	4.4	28
3	Electroencephalographic analysis in somanâ€exposed 21â€dayâ€old rats and the effects of midazolam or LY293558 with caramiphen. Annals of the New York Academy of Sciences, 2020, 1479, 122-133.	3.8	7
4	Acetylcholinesterase inhibitors (nerve agents) as weapons of mass destruction: History, mechanisms of action, and medical countermeasures. Neuropharmacology, 2020, 181, 108298.	4.1	57
5	Oscillatory Synchronous Inhibition in the Basolateral Amygdala and its Primary Dependence on NR2A-containing NMDA Receptors. Neuroscience, 2018, 373, 145-158.	2.3	13
6	Comparing the Antiseizure and Neuroprotective Efficacy of LY293558, Diazepam, Caramiphen, and LY293558-Caramiphen Combination against Soman in a Rat Model Relevant to the Pediatric Population. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 314-326.	2.5	8
7	Full Protection Against Soman-Induced Seizures and Brain Damage by LY293558 and Caramiphen Combination Treatment in Adult Rats. Neurotoxicity Research, 2018, 34, 511-524.	2.7	16
8	The M ₁ Muscarinic Receptor Antagonist VU0255035 Delays the Development of Status Epilepticus after Organophosphate Exposure and Prevents Hyperexcitability in the Basolateral Amygdala. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 23-32.	2.5	20
9	Susceptibility to Soman Toxicity and Efficacy of LY293558 Against Soman-Induced Seizures and Neuropathology in 10-Month-Old Male Rats. Neurotoxicity Research, 2017, 32, 694-706.	2.7	11
10	Repeated Isoflurane Exposures Impair Long-Term Potentiation and Increase Basal GABAergic Activity in the Basolateral Amygdala. Neural Plasticity, 2016, 2016, 1-9.	2.2	17
11	Longâ€ŧerm neuropathological and behavioral impairments after exposure to nerve agents. Annals of the New York Academy of Sciences, 2016, 1374, 17-28.	3.8	39
12	A rat model of nerve agent exposure applicable to the pediatric population: The anticonvulsant efficacies of atropine and GluK1 antagonists. Toxicology and Applied Pharmacology, 2015, 284, 204-216.	2.8	22
13	LY293558 prevents soman-induced pathophysiological alterations in the basolateral amygdala and the development of anxiety. Neuropharmacology, 2015, 89, 11-18.	4.1	23
14	Pathophysiological mechanisms underlying increased anxiety after soman exposure: Reduced GABAergic inhibition in the basolateral amygdala. NeuroToxicology, 2014, 44, 335-343.	3.0	29
15	ASIC1a Activation Enhances Inhibition in the Basolateral Amygdala and Reduces Anxiety. Journal of Neuroscience, 2014, 34, 3130-3141.	3.6	46
16	The Limitations of Diazepam as a Treatment for Nerve Agent–Induced Seizures and Neuropathology in Rats: Comparison with UBP302. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 359-372.	2.5	54
17	The recovery of acetylcholinesterase activity and the progression of neuropathological and pathophysiological alterations in the rat basolateral amygdala after soman-induced status epilepticus: Relation to anxiety-like behavior. Neuropharmacology, 2014, 81, 64-74.	4.1	48
18	Efficacy of the CluK1/AMPA Receptor Antagonist LY293558 against Seizures and Neuropathology in a Soman-Exposure Model without Pretreatment and its Pharmacokinetics after Intramuscular Administration. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 133-140.	2.5	20

VASSILIKI

ASSILIKI

#	Article	IF	CITATIONS
19	α ₇ -Containing nicotinic acetylcholine receptors on interneurons of the basolateral amygdala and their role in the regulation of the network excitability. Journal of Neurophysiology, 2013, 110, 2358-2369.	1.8	61
20	Acetylcholinesterase inhibition in the basolateral amygdala plays a key role in the induction of status epilepticus after soman exposure. NeuroToxicology, 2013, 38, 84-90.	3.0	39
21	RDX Binds to the GABA A Receptor–Convulsant Site and Blocks GABA A Receptor–Mediated Currents in the Amygdala: A Mechanism for RDX-Induced Seizures. Environmental Health Perspectives, 2011, 119, 357-363.	6.0	35
22	The GluK1 (GluR5) Kainate/α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor Antagonist LY293558 Reduces Soman-Induced Seizures and Neuropathology. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 303-312.	2.5	61
23	Electroconvulsive shocks exacerbate the heightened acoustic startle response in stressed rats Behavioral Neuroscience, 2010, 124, 170-174.	1.2	2
24	Diazepam administration after prolonged status epilepticus reduces neurodegeneration in the amygdala but not in the hippocampus during epileptogenesis. Amino Acids, 2010, 38, 189-197.	2.7	36
25	Higher susceptibility of the ventral versus the dorsal hippocampus and the posteroventral versus anterodorsal amygdala to soman-induced neuropathologyâ~†. NeuroToxicology, 2010, 31, 485-492.	3.0	57
26	Topiramate Reduces Excitability in the Basolateral Amygdala by Selectively Inhibiting GluK1 (GluR5) Kainate Receptors on Interneurons and Positively Modulating GABA _A Receptors on Principal Neurons. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 558-566.	2.5	63
27	Primary brain targets of nerve agents: The role of the amygdala in comparison to the hippocampus. NeuroToxicology, 2009, 30, 772-776.	3.0	58
28	Pathology and pathophysiology of the amygdala in epileptogenesis and epilepsy. Epilepsy Research, 2008, 78, 102-116.	1.6	161
29	Stress Impairs α1A Adrenoceptor-Mediated Noradrenergic Facilitation of GABAergic Transmission in the Basolateral Amygdala. Neuropsychopharmacology, 2004, 29, 45-58.	5.4	123
30	The Physiological Role of Kainate Receptors in the Amygdala. Molecular Neurobiology, 2004, 30, 127-142.	4.0	30
31	Bidirectional Modulation of GABA Release by Presynaptic Glutamate Receptor 5 Kainate Receptors in the Basolateral Amygdala. Journal of Neuroscience, 2003, 23, 442-452.	3.6	107
32	Dopamine D2 Receptor–Mediated Presynaptic Inhibition of Olfactory Nerve Terminals. Journal of Neurophysiology, 2001, 86, 2986-2997.	1.8	210
33	Input-specific LTP and depotentiation in the basolateral amygdala. NeuroReport, 2001, 12, 635-640.	1.2	33
34	Tonic and Synaptically Evoked Presynaptic Inhibition of Sensory Input to the Rat Olfactory Bulb Via GABA _B Heteroreceptors. Journal of Neurophysiology, 2000, 84, 1194-1203.	1.8	177
35	Current-Source Density Analysis in the Rat Olfactory Bulb: Laminar Distribution of Kainate/AMPA- and NMDA-Receptor-Mediated Currents. Journal of Neurophysiology, 1999, 81, 15-28.	1.8	52
36	Dendrodendritic Recurrent Excitation in Mitral Cells of the Rat Olfactory Bulb. Journal of Neurophysiology, 1999, 82, 489-494.	1.8	105

VASSILIKI

#	Article	IF	CITATIONS
37	Glutamate and Synaptic Plasticity at Mammalian Primary Olfactory Synapsesa. Annals of the New York Academy of Sciences, 1998, 855, 457-466.	3.8	47
38	Functional Organization of Rat Olfactory Bulb Glomeruli Revealed by Optical Imaging. Journal of Neuroscience, 1998, 18, 2602-2612.	3.6	81
39	Intrinsic inhibitory pathways in mouse barrel cortex. NeuroReport, 1996, 7, 2363-2368.	1.2	34
40	LTP in the barrel cortex of adult rats. NeuroReport, 1995, 6, 2297-2300.	1.2	16